1、前言
配位聚物(coordinationpolymers ),是由过渡金属和有机配体自组装 ,在空间上形成一维、二维或三维的无限结构。这类无机-有机杂化复合聚合物材料结构多样、性能优异 ,作为功能材料如选择性催化分子识别、气体吸附、离子交换、超高纯度分离材料 ,生物传导材料 ,光电材料 ,新型半导体材料 ,磁性材料和芯片开发等领域显示了诱人的应用前景。因此 ,这方面的研究成为 20 世纪 90 年代后化学和材料学科中最为活跃的研究领域之一。深入地了解配位聚合物的合成、结构、性能及应用是近年来化学家和材料科学家追求的目标。目前 ,这类化合物的研究基本上集中在以有机桥基和金属离子为单元构筑
【1—3】
的各类具有功能特性的聚合物 。最近10 年内有许多
文献【4 —6】报道了该类物质的特殊理化性质 ,如催化性能、手性、导电性、发光性、磁性、非线性光学性能和多孔性。在含氮杂环配体当中,以吡嗪及其相关的各种衍生物为配体而合成的配合物在含氮芳香杂环为配体的配合物家族中占据有非常重要的位置。它们以其特有的配位结构和配位性质而被配位化学工作者所重视。本综述主要探讨以吡嗪及其衍生物为有机配体的相关配位聚合物的研究工作情况。 2、有机配体的设计
现已得知,多核配合物中配位原子的电子密度与其桥联金属离子间的磁耦合作用有着密切的关联因素,特别是桥联配体[7-38]的配位原子的电子密度直接影响着其桥联金属离子间的磁相互作用的大小。配位原子的电子密度大,则其桥联金属离子间的磁相互作用就强;反之,其磁相互作用就弱。因此,为了获得具有较强的磁耦合性质的桥联多核配合物,应设计、合成那些含有较大电子密度的配位原子的配体。理论和实验均已证实,氮杂环化合物中氧原子的电子密度远大于其相应的氮杂环中氮原子的电子密度[39-40]。因此,氮杂环氮氧化物中氧原子较相应的氮杂环化合物中氮原子具有强的配位能力而可形成强的配位键。文献报道了吡啶类氮氧化物桥联双核Cu(II)配合物与其桥联 Cu(II)离子间产生了强的磁耦合作用[41-42];文献也报道了含有吡嗪类氮氧化物桥联配体的多核配合物中其磁耦合作用强于相应的含有吡嗪类为桥联配体的配合物中金属离子的磁相互作用的实例[43]。
羧酸配体是最常见的配体,这类配体本身具有很多优点:首先,含有多个桥联部分,与金属离子有多种配位模式,可以产生更多结构;其次,根据去质子的程度,配体本身可以同时作为氢键受体和给体。多齿螯合配位键的稳定性和芳香族羧酸配体的刚性结构保证了吸附和脱附后配合物结构的稳定。一些刚性的多羧酸配体如对苯二酸 (BDC)、均苯三酸(BTC)和苯均四酸 (BTEC)及其衍生物和类似物可以得到具有选择性吸附性质的、较稳定的“沸石”结构【44 —48】。
草酸离子作为一种刚性的双齿配体 ,具有不同的配位模式 ,键合能力较强 ,还
可以桥联多个金属中心 ,与过渡金属、主族金属和稀土元素反应 ,得到了一系列0 —3D拓展结构 【49-52】。其中最常见的是 2D蜂窝结构 ,这种结构使得分子类型和孔洞功能具有很大的可变性。低维草酸结构的一个共同特征是存ππ或其他弱相互作用 ,在一定程度上增大了结构的稳定性。草酸本身具有特殊的电子离域效应 ,可以作为顺磁金属离子的媒介 ,制备具有磁学性质的化合物。含氮杂环氮氧化物不仅在磁学性质方面显示了其特有的强桥联耦合性质,在非线性光学性质方面也显示了其独特的性质。例如,4-硝基吡啶氮氧化物由于其基态时较小的偶极矩和激发态时较大的偶极矩而使其作为桥联配体的一维 Cd(II)配合物显示有极强的二阶非线性光学性质[53-54]。因此,设计合成含有吡啶类氮氧化物、吡嗪类氮氧化物为桥联配体的新型多核配合物并研究其结构特征对于日后其磁学及光学性质研究具有重要的理论和实验指导意义。 3、基于吡嗪及其衍生物的配位聚合物的合成
在含氮杂环配体当中,以吡嗪及其相关的各种衍生物为配体而合成的配合物在含氮芳香杂环为配体的配合物家族中占据有非常重要的位置。它们以其特有的配位结构和配位性质而被配位化学工作者所重视。吡嗪与 CuBr2(或 CuCl2)反应而形成的二维结构的配合物[55],其中,吡嗪以其两氮原子配位于 Cu(II)离子而形成一维链式结构。由于吡嗪与卤素离子作为混合桥联配体而使该配合物形成了复杂的磁耦合路径,从而给磁学工作者提供了探索研究复杂磁耦合体系的一个极佳的实例。吡嗪和过氧硫酸根作为混合桥联配体与二价银离子配位形成的三维结构中由于吡嗪配位而形成的二维层状结构
[56]
。二价银的化合物是非常难于制备合成,但由于吡嗪的配位特性而导致了这
一配合物的生成。该配合物的合成对于研究 Ag(II)类配合物的磁相互作用提供了研究实例。吡嗪与 Ru(II)所形成的三角形状三核配合物[57]。一般而言,吡嗪作为桥联配体而形成的配合物通常为矩形网格结构。而形成三角状的配位结构实属罕见。这充分说明了吡嗪化合物的配位多样特性。吡嗪与苯甲酸根离子作为混合桥联配体与 Zn(II)所形成的二维层型结构[58]。一般而言,当吡嗪化合物与其它配体共同参与配位时,由于配体间的相互搭配而形成了各种结构不同的配合物。
与吡嗪类配位化合物相比较,以吡嗪衍生物为配体的配合物其配位模式则较为复杂,从而所得配合物的结构也更为丰富。以吡嗪衍生物为配体的化合物,主要有吡嗪的 2,3,5,6-位被甲酸根部分取代和全部取代的各类的化合物,如:2-甲酸吡嗪
[59-63]
;
2,3-二甲酸吡嗪[64-68],2,5-二甲酸吡嗪[69-70];2,6-二甲酸吡嗪[71],2,3,5-三甲酸吡嗪[72],2,3,5,6-四甲酸吡嗪[73-75]。由于有羧酸基团的存在,因此,这类化合物中的羧酸基团的氧原子与吡嗪氮原子共同参与配位而形成了各种不同结构种类新颖配位化合物。除羧酸类取代基外,甲基类取代的衍生物也常常作
为配体而与各种金属离子配位而形成各种结构的配合物[76]。含有吡嗪基团和吡啶基团的醚类化合物,以该类化合物为桥联配体而合成的一系列新型超分子配合物已有文献
报道[77],其中包含有首例手性二维网状配合物[78]。此外,苯并吡嗪[79],2-丁基-3-甲基吡嗪[80]等化合物为配体的配合物也有文献报道。总之,吡嗪及其衍生物在配位化学学科中扮演了非常重要的角色。
4、基于该类配体的配位聚合物的应用研究
L. S. Zheng 课题组于 2006 年报道了吡嗪及其衍生物、经典 Keggin 型杂多与Cu(II) 在水热条件下形成的五个不同结构的配合物[81]如图1-1,讨论了有机配体空间位阻效应对化合物框架结构的影响。这是有机配体空间位阻调控含 多酸配合物结构的一个典型例子。
图 1-1吡嗪及其衍生物与 Cu(II) 及 PW12O40形成的配合物的结构
3-
在超分子化学领域,主客体单元经由分子识别作用自组装构筑成新型超分子实体或功能性分子器件是一个倍受关注的研究领域,其本质是效仿自然界广泛存在的分子识别过程[82]。在超分子组装体的构筑过程中,阴离子被广泛用作客体单元并在组装中起到模板剂或结构导向的作用[83,84]。与简单的无机阴离子相比,POM 阴离子显示出更大的尺寸、更高的电荷数和更丰富的拓扑学构型,将 POM阴离子作为客体单元引入到超分子主体中,可以得到具有更大空穴、孔道或腔体的超分子主体结构。J. Zubieta 小组利用同多钼酸盐阴离子作为客体合成得到的 [Fe(tpypor)3Fe](Mo6O19)2 xH2O (tpypor = 四吡啶基卟啉 )[85],其[Mo6O19]2-阴离子位于 Fe(II) 与四吡啶基卟啉配位形成的三维主体框架中。配 位 聚 合 物 Cu3(2-pzc)4(H2O)2(V10O28H4)·6.5H2O 和 Cu4(2-pzc)4(H2O)8-(Mo8O26)·2H2O(2-pzc = 2-羧基吡嗪)[86]分别是以十钒酸盐阴离子和八钼酸盐阴离子为模板剂而获得的。其中,十钒酸盐阴离子位于 Cu(II) 与 2-羧基吡嗪形成的二维层的空腔中,而八钼酸盐阴离子则位于 Cu(II) 与 2-羧基吡嗪形
成的一维链间,尽管这些 POM 阴离子没有参配位,但如果没有这些 POM 阴离子的存在,在相同实验条件下得到的只是单核化合物 Cu(2-pzc)2(H2O)2。在这两个化合物的形成过程中,POM 阴离子不仅作为电荷补偿剂,而且起着结构导向的作用。
吡嗪二甲酸的研究主要集中在2,3-吡嗪二甲酸(Pyrazine-2,3-dicarboxylic acid ,Hapzda), H2pzda有两个接基,有多种配位模式,由于两梭基间夹角较小,仅为60°,空间位阻效应大,使梭基的氧原了和环上的氮原子非共面,有助于构筑高维的网络结构。其中最具代表性的是Kitagawa等的配位柱层微孔聚合物[{Cu2(pzdc)2(L)}]n(L =4,4'-bpy or Py, pillar ligand) 工作。H2pzda与金属离子构筑的二维层状结构为次级构筑单元(SBU),再引入第二桥联配体(4,4’-bpy)起协同作用(cooperation),有助于合成配位柱层微孔聚合物。从而在对氮气_、氧气5、对于该类配位聚合物面临的挑战和展望
因金属-有机复合材料的孔洞形状、孔径大小以及化学功能等具有可调节性和可控制性,而使其在催化、分离、气体存储和分子识别等方面表现出潜在的应用价值[92-100]。在构筑这类新型材料时,人们渴望每种构筑基元除了贡献出各自具有的特定物理性质外,还将通过相互作用发挥协同效应而产生新的功能特性。POM 由于其组成和结构的多样性以及在多相催化、主-客体化学、生物化学、纳米技术以及电、磁和光化学材料等领域具有广泛的应用前景[101-102],已经吸引人们将它们作为构筑具有孔洞和微孔结构的配位聚合物的重要基元之一。综观有关文献
[103-120]
[87,91]
、氩气
_、甲院[91]、甲醇乙炔[89’90]等小分子的分子吸附和磁性方面有着独特的应用。
可以发现,到目前为止,具有孔
洞的多酸无机-有机配位聚合物构筑从结构上来说主要有以下两种类型:(1) 通过配位键和氢键形成的“柱层”构(多酸通过配位键或氢键作用将金属离子与有机配体形成的二维层连接形成三结构,多酸在二维层间起着“支柱”作用)[103-106];(2) 是多酸作为模板剂的“脚架式的三维框架结构(多酸位于金属离子和有机配体配位形成的“脚手架”式的维框架内,起着电荷补偿的作用)[107-108,116,119-121]。然而,由于 POM 有许多端基 O和桥基 O 可以与金属配位,并且氧原子的配位能力都较弱,当反应的温度、pH值、溶剂等条件改变时,会有不同个数的氧原子参与配位或形成氢键,这样很在配位键或氢键的方向性导向下定向组装微孔多酸无机-有机复合材料。即使使文献[107-108,116,119-121]中所说的多酸离子作为“模板剂”,由于很难预测金属离子有机配体配位形成的“脚手架”的空间结构,所以不清楚是多酸离子作为模板剂还是金属-有机“脚手架”作为模板剂[117],也就很难达到定向合成的目的。所以如何定向合成孔洞形状、孔径大小以及化学功能等具有可调节性和可控制性的微孔多酸无机-有机复合材料是化学工作者所面临的挑战。 参考文献
[1] 洪茂春(HongMC),吴新涛(WuXT),曹荣(CaoR)黄群(HuangQ),苏伟华(SuWH),化学进展(Progressin)Chemistry,2003,15(4):249-255
[2]BaiJF,VirovetsAV,ScheerM.Angew.Chem.Int.Ed.,2002,41(10): 1737—1740 [3]BaiJF,LeinerE,ScheerM.Angew.Chem.Int.Ed.,2002,41(5 ):783 —786 [4]KitagawaS,KitauraR,NoroS.Angew.Chem.Int.Ed.,2004,43:2334 —2375 [5]JaniakC.DaltonTrans.,2003 ,2781 —2804
[6]BaiJF,ZuoJL,ShenZ,etal.Inorg.Chem.,2000 ,39 (6)1322-1324 49 37. Santana. M. D, Garcia. G, Julve. M, Lloret. E, Perez. J, Liu. M, Sanz. E,Cano. J, Lopez. G, Inorg. Chem., 2004, 43, 2132 [7] 姜宗慧 等,中国科学(B)., 1993, 23, 1009.
[8] Stephen S-Y, Chui et al, Scicence, 1999, 283, 1148.
[9] Phalguni Chaudhuri et al, J. Am. Chem. Soc., 1988, 110, 3657. [10] Ming-Gen Zhao et al, Trans. Met. Chem., 2003, 28, 525.
[11] Evangelos Bakalbassis et al, J. Chem. Soc. Chem. Commun., 1990,1771. [12] Fllipe A Almeida Paz and Jacek Klinowski, Inorg. Chem., 2004, 3882. [13] Fllipe A Almeida Paz and Jacek Klinowski, Inorg. Chem., 2004, 3948. [14] Sujit K.Ghosh and Parimal K.Bharadwaj, Inorg. Chem., 2004, 5180.
[15] Yao Kang, Yuan-Gen Yao, Ye-Yan Qin, Jian Zhang et al, Chem.Commun., 2004, 1046. [16] Chang Seop Hong,Yong Sin You, Polyhedron., 2004, 3043.
[17]Licun Li, Daizheng Liao, Zonghui Jiang, Shiping Yan, Inorg. Chim. Acta.,2004, 357, 405. [18] Atsushi Kyono, Mitsuyoshi Kimata, Tamao Hatta, Inorg. Chim. Acta.,2004, 357, 2519.
[19]Sevtlana G. Bala,Irina G. Filippova, Olesea A. Gherco et al, Inorg. Chim. Acta., 2004, 357, 3419. [20] Chao Qin, Xinlong Wang, Enbo Wang, Changwen Hu and Lin Xu, Inorg. Chim. Acta., 2004, 357, 3683. [21]Vallet. V , Moll. H , Wahlgren. U , Szabo. Z , Grenthe. I , Inorg. Chem. ,2003, 42, 8598 [22]Lu. J. Y, Macias. J, Lu. J, Cmaidalka. J. E, Cryst. Growth Des., 2002, 2,485
[23] Shen. H-Y Bu. W-M Liao. D-Z Jiang. Z-H Yan. S-P Wang. G-L, Inorg.Chem., (Note), 2000, 39, 2239 [24]Coronado. E, Galan-Mascaros. J. R, Gomez-Garcia. C. J, Martinez-Agudo. J. M, Inorg. Chem., 2001, 40, 113
[25]Rastegar. M. E, Todd. E. K, Tang. H, Wang. Z. Y, Org. Lett., 2004, 6, 451953. S. J. Gruber, C. M. Harris, E. Kokot, S. L. Lenzer, T. N. Lockyer, E. Sinn,Aust. J. Chem., 1967, 20, 2403.
[26] Santana. M. D, Garcia. G, Julve. M, Lloret. E, Perez. J, Liu. M, Sanz. E,Cano. J, Lopez. G, Inorg. Chem., 2004, 43, 2132
[27] Donatella Armentano, Giovanni De Munno, Francesc Lloret, MiguelJulve, CrystEngComm., 2005, 7, 57-66 [28] Wen-Yuan Wu, You Song, Yi-Zhi Li and Xiao-Zeng You, Inorganic Chemistry Communications., 2005, 8, 732
[29] Jin-Kui Tang, Shu-Feng Si, Li-Ya Wang, Dai-Zheng Liao, Zong-Hui Jiang, Shi-Ping Yan, Peng Cheng and Xin Liu, Inorganica Chimica Acta., 2003,343, 288
[30]Jose M. Dominguez-Vera, Natividad Galvez, Jose M. Moreno and Enrique Colacio, Polyhedron., 1998, 17, 2713
[31] T. Matsumoto, R. A. Periana, D. J. Taube, H. Yoshida , J. Molecular Catalysis A Chemical., 2002, 180, 1
[32] H. Riihimaki, T. Kangas, P. Suomalainen, H. K. Reinius, S. Jaaskelainen, M. Haukka, A. O. I. Krause, T. A. Pakkanen, J. T. Pursiainen, J.
Molecular Catalysis A:Chemical., 2003, 200, 81
[33] R. Schmid, H. Ahamdane, A. Mosset, Inorg. Chim. Acta ,1991, 190, 237 [34]R. L. Lintvedt, J. K. Zehetmair, Inorg. Chem., 1990, 29, 2204
[35]S. R. Drake, M. B. Hursthouse, K. M. A. Malik, D. J. Otway, J. Chem. Soc.,Dalton Trans., 1993, 2883 [36]J-Y Thepot, M. J. McGlinchey, J. Organomet. Chem., 2002 ,656,243
[37]S. Patra, B. Mondal, B. Sarkar, M. Niemeyer, G. K. Lahiri, Inorg. Chem.,2003, 42, 1322
[38]S. Parola, R. Papiernik, L. G. Hubert-Pfalzgraf, S. Jagner, M. Hakansson,J. Chem. Soc., Dalton Trans., 1997, 4631
[39]H. L. Sun, B. Q.Ma, S. G, G. S, Chem. Commum., 2001, 2586-2587
[40]Z-M Su, J-K Feng, A-M Ren, S-Q Zhang and J-A Sun, Chem, J. Chinese.Univ., 2000, 21, 590 [41]W. H. Watson, Inorg. Chem., 1969, 8, 1879
[42]S. J. Gruber, C. M. Harris, E. Kokot, S. L. Lenzer, T. N. Lockyer, E. Sinn, Aust. J. Chem., 1967, 20, 2403.
[43]H. L. Sun, B. Q. Ma, S. Gao, G. Su, Chem. Commun., 2001, 2586. [44]LuTB,XiangH,LuckRL,JiangL,MaoZW,JiLN.NewJ.Chem.,2002 26:969—971
[45]SunDF,CaoR,WengJB,HongMC,LiangYC.J.Chem.Soc.,Dalton.Trans.,2002,291 —292 [46]PriorTJ,RosseinskyMJ.Inorg.Chem.,2003,42:1564 -1575
[47]ShiZ,LiGH,WangL,GaoL,ChenXB,HuaJ,FengSH.Cryst.GrowthDes.,2004,4:25—27 [48]YingSM,MaoJG.Eur.J.Inorg.Chem.,2004 ,6:1270 -1276
[49]FelthouseTR,LaskowshiEJ,HendricksonDN.Inorg.Chem.,1977 ,16:1077—1089 [50]ModecB,BrencicJV,DolencD,ZubietaJ.J.Chem.SocDaltonTrans.,2002,4582—4586 [51]EscuerA,VicenteR,SolansX,Font2BardiaM.Inorg.Chem1994 33:6007—6011 [52]KitagawaS,OkuboT,KawataS,KondoM,KatadaMKobayashiH.Inorg.Chem.,1995, 34:4790—4796
[53] D. Xu, M. G. Liu, W. B. Hou, D. R. Yuan, M. H. Jiang, Q. Ren, B. H. C.chai, Mat. Res. Bull., 1994, 29, 73.
[54] Simpon, P. G.; Vinciguerra, A. and Quagliano, J. V. Inorg. Chem. 1963, 2,282.45
[55] Mao. L, Retting. S. R, Thompson. R. C, Trotter. J,2,3-Pyrazinedicarboxylates of cobalt(II), nickel(II), and copper(II);magnetic properties and crystal structures [J]. Can. J. Chem. 1996, 74:433-444.
[56] Postel. N, Casabianca. F, Gauffreteau. Y, The Structure and Reactivitytowards Oxygen Transfer of Pyrazinedicarboxylato
Peroxo
TitaniumDerivatives.
Molecular
and
Crystal
Structure
of
Peroxo(pyrazine2-carboxylato 3-carboxyl)(acetylacetonato)(hexamethylphosphortriamide)[J]. Inorg. Chim. Acta. 1986, 113: 173-180.
[57] Zou. J. Z, Xu. Z, Chen. W, Lo. K. M, You. X. Z, Synthesis, Structure and magnetic
properties
of
new
polymeric
compounds
containingmanganese(II)-Pzdc
(PzdcH2:
2,3-Pyrazinedicarboxylic acid) [J].Polyhedron. 1999, 18: 1507-1512. [58] Wang. Y, Stoeckli-Evans, Diaquabis(5-methoxycarbonyl-3,6-dimethylpyr
azine-2-carboxylato-N1,O)copper(II) [J]. Acta Crystallogr,Sect.C(Cr.Str.Comm.), 1998, 54: 306-308. [59] Beobide. G, Castillo. O, Luque. A, et al. Supramolecular Architectures andMagnetic Properties of Coordination Polymers Based onPyrazinedicarboxylato Ligands Showing Embedded Water Clusters [J].Inorg. Chem, 2006, 45: 5367-5382.
[60] Wang. F. Q, Zheng. X. J, Wan. Y. H, Wang. K. Z, Jin. L. P, Architecture ofzero-, one-, two- and three-dimensional structures based on metal ionsand pyrazine-2,6-dicarboxylic acid [J]. Polyhedron, 2008, 27: 717–726.
[61] Wang. F. Q, Mu,. W. H, Zheng. X. J, Liu. L. C, Fang. D. C, Jin, L. P,Hydrothermal Reaction of Cu(II)/Pyrazine-2,3,5-tricarboxylic acid andCharacterization of the Copper(II) Complexes [J]. Inorg. Chem, 2008, 47:5225-5233. [62]
Marioni.
P.
A,
Stoeckli-Evans.
H,
Marty.
W,
et
al.Poly{[
μ
-(2,5-dicarboxypyrazine-3,6-dicarboxylato)-trans-diaquairon(II)dihydrate]}, a Member of a New Class of Quasi-Linear Chain Compounds.44pyrazine on construction of crystal structuresof Zn(II)-benzoate complexesand their catalytic activities (dinuclear, trinuclear, and pentanuclear to 1-Dand 2-D) [J]. Polyhedro, 2008, 27: 3484-3492.
[63] Goher. M. A. S, Mark. T. C. W, Popitsch. A, Preparation and Spectral Characterization of Copper(I) Halide, Nitrate and Perchlorate Complexes of Pyrazinic Acid X-ray Crystal Structure of Polymeric [Cu2(pyrazinicacid)2I2]·3H2O [J]. Polyhedron, 1994, 14: 2587-2594.
[64] Gohamed, A. S. M.; Al-salem, N. A.; Mautner, F. A.; Klepp, K. O, Acopper(II) azide compound of pyrazinic acid containing a new dinuclearcomplex anion [Cu2(N3)]. Synthesis, spectral and structural study ofKCu2(pyrazinato)(N3)4[J]. Polyhedron, 1997, 16: 825-831.
[65] Goher. M. A. S, Mautner. F. A, Popitsch. A, Systhesis, Spectroscopic andCrystal Structure Study
2-
of NaMn(pyrazinato)(N3)2(H2O)2. A PolymericStructure Containing(μ-1,1,3)-bridging Azido Ligands Between Manganeseand Sodium Centred Polyhedra [J]. Polyhedron, 1993, 12: 2557-2561.
[66] Goher.M. A. S, Abu-Youssef. M. A. M, Mautner. F. A, 1D polymericcopper(II)complexes containing bridging tridentate pyrazinato andterminalchloro or azido anions. Synthesis, spectral, structural and thermalstudy of [CuCl(pyrazinato)(H2O)]nand [Cu(N3)(pyrazinato)(H2O)]ncomplexes [J]. Polyhedron, 1998, 17: 3305-3314.
[67] Klein. C. L, Majeste. R. J, Trefonas. L. M, O'connor. C. J, MagneticProperties and Molecular Structure of Copper(II) Complexes ofPyrazinecarboxylic Acid [J]. Inorg. Chem, 1982, 21: 1891-1897.
[68] O'connor. C. J, Sinn. E, Crystal Structures and Magnetic Properties of Cobalt(II) Pyrazinecarboxylate and Pyrazinedicarboxylate Complexes [J].Inorg. Chem, 1981, 20: 545-551.
[69] O'connor. C. J, Klein. C. K, Majeste. R. J, Trefonas. L. M, MagneticProperties and Crystal Structure of (2,3-Pyrazinedicarboxylato)copper(II)Hydrochloride: A Pyrazine-Bridged Ferromagnetic Linear Chain [J]. Inorg.Chem, 1982, 21: 64-67.
[70] Butcher. R. T, Landee. C. P, Turnbull. M. M, Xiao. F, Rectangulartwo-dimensional antiferromagnetic systems: Analysis of copper(II)pyrazine dibromide and dichloride [J]. Inorg. Chim. Acta, 2008, 361:3654-3658.
[71] Manson. J. L, Stone. K. H, Southerland. H. I, et al. Characterization of the
Antifferromagnetism in Ag(pyz)(S2O8)(pyz=Pyrazine) with aTwo-Dimensional Square Lattice of AgIons [J]. J. Am. Chem. Soc. (online)
[72] Derossi. S, Casanova. M, Llengo. E, Zangrango. E, Stener. M, Alessio. E.,Self-Assembled Metallacycles with Pyrazine Edges: A New Example inWhich the Unexpected Molecular Triangle Prevaila over the ExpectedMolecular Square [J]. Inorg. Chem, 2007, 46(26): 11243-11253.
[73] Kawk. H, Lee. S. H, Kim. S. H, Lee. Y. M, et al. Substituent effects ofPreparation, Structure, and Magnetic Susceptibility [J]. Helvetica Chimica Acta, 1986, 69: 1004-1011.
[74] Marioni. P, Marty. W, Stoeckli-Evans, H, Whitaker. C, Coordination polymers of Mn(II) with the ligand pyrazine-2,3,5,6-tetracarboxylic acid [J].Inorg. Chim. Acta, 1994, 219: 161-168.
[75] Gao. H. L, Zhang. Y. P, Yang. A. H, Fang. S. R, Cui. J. Z, 1D slide-fastener-like coordination polymers of Mn(II) derived from pyrazine-2,3,5,6-tetracarboxylic acid [J]. Journal of Molecular Structure, 2009, 918: 97–100.
[76] Otieno. T, Retting. S. J, Thompson. R. C, Trotter. J, Complex Polymeric Cations of Copper(I) with Graphite-
and
Diamond-Related
Lattices:
Crystal
Structure
of
Poly-tris(
μμ
2+
-2,5-dimethylpyrazine)dicopper(I)HexafluorophosphateandPoly-bis(
-2,5-dimethylpyrazine)copper(I)Hexafluorophosphate [J]. Inorg. Chem, 1993, 32: 1607-1611.
[77] David. A, Morran. M, Peter J. S, New U- and Y-shaped components for metallosupramolecular assemblies:
synthesis and coordination chemistry of 2,6-bis(3-pyridyloxy)pyrazine [J]. J. Chem. Soc. Dalton Trans, 2002,3321-3326.
[78] Ribis. A, Escuer. M, Vicente. R, Cortes. R, Lezama. L, Rojo. T,Rolynuclear Ni(II) and Mn(II) azido bridging complexes, Structural trends and magnetic behavior [J]. Coord. Chem. Rev, 1999, 1027: 193-195, [79] Kwak . H, Lee . S. H, Kim . S. H, Lee . Y. M, et al. Substituent effects of pyrazine on construction of crystal structures of Zn(II)-benzoate complexes and their catalytic activities (dinuclear, trinuclear, and pentanuclear to 1-D and 2-D) [J]. Polyhedron, 2008, 27: 3484–3492.
[80] Koyama. N, Ishida. T, Nogami. T, Kogane. T, A pyrazine-bridged linear pentanuclear copper(II) complex and related tri- and dinuclear complexes showing various coordination structures and magnetic couplings [J]. Polyhedron, 2008, 27: 2341–2348.
[81] Y. P. Ren, X. J. Kong, X. Y. Hu, M. Sun, L. S. Long, R. B. Huang and L. S. Zheng. Influence of steric hindrance of organic ligand on the structure of Keggin-based coordination polymer[J]. Inorg. Chem., 2006, 45(10): 4016-4023.Inor
[82] 游效增,孟庆金,韩万书. 配位化学进展 [M]. 高等教育出版社. 2000.
[83] J. L. Sessler, A. Andrievsky, P. A. Gale and V. Lynch. Anion binding: Self-assembly of polypyrrolic macrocycles [J]. Angew. Chen., Int. Ed. Engl., 1996, 35, 2782-2785.
[84] X. Yang, C. B. Knobler and M. F. Hawthorne. [12]Mercuracarborand-4 , the first
representative of a new class of rigid macrocyclic electrophiles: The chloride ion complex of acharge-reversed analogue of 12-Crown-4 [J]. Angew. Chem., Int. Ed. Engl., 1991, 30,1507-1508. [85] D. Hagrman, P. J. Hagrman, J. Zubieta. Solid-State Coordination Chemistry: The
Self-Assembly of Microporous Organic-Inorganic Hybrid Frameworks Constructed from Tetrapyridylporphyrin and Bimetallic Oxide Chains or Oxide Clusters [J]. Angew. Chem.,Int.Ed., 1999, 38, 3165-3168. [86] L. M. Zheng, Y. S. Wang, X. Q. Wang, J. D. Korp and A. J. Jacobson. Anion-directed crystallization of coordination polymers: Syntheses and characterization of Cu4(2-pzc)4(H2O)8(Mo8O26) center dot 2H2O and Cu3(2-pzc)4(H2O)2(V10O28H4) center dot6.5H2O (2-pzc = 2-pyrazinecarboxylate) [J]. Inorg. Chem., 2001, 40 (6): 1380-1385.
[87]Kondo M, Okubo T, Asami A.et al. Rational Synthesis of Stable Channel-Like Cavities with Methane Gas Adsorption Properties: [{Cu2(pzdc)2(L)}n] (pzdc .pyrazine -2 .3-dicarboxylate; L.a Pillar Ligand)[J]. Angewandte Chemie International Edition, 1999,V38(l-2): 140-143.
[88]Horike S, Matsuda R, Kitaura Ryo,et al. Motion of methanol adsorbed in porous coordination polymer with paramagnetic metal ions[J]. Chemical Communication, 2004, 40(19): 2152-2153.
[89]Kitaura R., Kitagawa S.,Kubota Y.et al. Formation of a One-Dimensional Array of Oxygen in a Microporous Metal-Organic Solid[J]. Science, 2002, V298: 2358-2361.
[90]Kubota Y,Takata M, Kitagawa S,et al. Metastable Sorption State of a Metal-Organic Porous Material
Determined by In Situ Synchrotron Powder Diffraction[J]. Angewandte Chemie International Edition,2006, V45(30): 4932-4936.
[91]Uemura T. Kitaura R, Kitagawa S. Nanochannel-Promoted Polymerization of Substituted Acetylenes in Porous Coordination Polymers[J]. Angewandte Chemie International Edition, 2006,V45(25): 4112-4116. [92]Kitaura R.,Matsuda R, Kitagawa S, et al. Formation and Characterization of Crystalline Molecular Arrays of Gas Molecules in a 1-Dimensional Ultramicropore of a Porous Copper Coordination Polymer[J]. Journal of physical chemistry B,2005, V109(49): 23378-23385. [93] J. Berzelius. [J]. Pogg. Ann., 1826, 6:369. [94] C. Marignac. [J]. C.R. Acad. Sci., 1862, 55: 888. [95] C. Marignac. [J]. Ann. Chim, 1862, 25: 362. [96] L. Pauling. [J]. J. Am. Chem. Soc., 1934, 5: 2868. [97] J. F. Keggin. [J]. Proc. R. Soc., 1934, 144A: 75.
[98] F. A. Cotton 和 G. Wilkinson 著,北京师范大学等译. 高等无机化学 [M]. 北京: 人民教育 出版社, 1980.
[99] B. J. S. Johson, R. C. Schroden, C. C. Zhu and A. Stein. Synthesis and characterization of 2D and 3D structures from organic derivatives of polyoxometalate clusters: Role of organic moiety, counterion and solvent [J]. Inorg. Chem., 2001, 40(23): 5972-5978.
[100] B. J. S. Johson, R. C. Schroden, C. C. Zhu, V. G. Yong and A. Stein. Design and analysis of chain and network structures from organic derivatives of polyoxometalate clusters [J]. Inorg. Chem., 2002, 41(8): 2213-2218.
[101] S. Bareyt, S. Piligkos, B. Hasenknopf, P. Gouzerh, E. Lacote, S. Thorimbert and M. Malacria. Highly efficient peptide bond formation to functionalized wells-Dawson type polyoxotungstates [J]. Angew. Chem., Int. Ed., 2003, 42(29): 3404-3406.
[102] C. Sassoye, K. Norton and S. C. Sevov. [(Mo5Mo7O30)(BPO4)2(O3P-Ph)6]5-: A phenyl-sub-stituted molybdenum(V/VI) boro-phosphate polyoxometalate [J]. Inorg. Chem., 2003, 42(5):1652-1655.
[103] M. Lu, Y. G. Wei, B. B. Xu, C. F. Cheng, Z. H. Peng and D. R. Powell. Hybrid moleculardumbbells: Bridging polyoxometalate clusters with an organic π-conjugated rod [J]. Angew.Chem., Int. Ed., 2002, 41(9): 1566-1568.
[104] H. Y. An, E. B. Wang, D. R. Xiao, Y. G. Li, Z. M. Su and L. Xu. Chiral 3D architectures with helical channels constructed from polyoxometalate clusters and copper-amino acid complexes[J]. Angew. Chem., Int. Ed., 2006, 45(6): 904-908.
[105] J. Lu, E. H. Shen, Y. G. Li, D. R. Xiao, E. B. Wang and L. Xu. A novel pillar-layered organic-inorganic hybrid based on lanthanide polymer and polyomolybdate clusters: New opportunity toward the design and synthesis of porous framework [J]. Cryst. Growth Des.,2005, 5(1):65-67.
[106] Y. Lu, Y. G. Li, E. B. Wang, J. Lu and L. Xu. [H2bpy]2[{Cu(btepy)2}Mo5P2O23]·4H2O: Athree-dimensional framework built from transition-metal coordination polymer sheets pillared by polyoxomolybdophosphate clusters [J]. Eur. J. Inorg. Chem., 2005(7): 1239-1244.
[107] C. Y. Sun, Y. G. Li, E. B. Wang, D. R. Xiao, H. Y. An and L. Xu. A series of new organic-inorganic molybdenum arsenate complexes based on [(ZnO6)(As3O3)2Mo6O18]and[HxAs2Mo6O26](6-x)-Clusters as SBUs [J]. Inorg. Chem., 2007, 45, 1563-1574.
[108] C. Inman, J. M. Knaust and S. W. Keller. A polyoxometallate-templated coordination polymer:synthesis and crystal structure of [Cu3(4,4-bipy)5(MeCN)2]PW12O40center dot 2C6H5 CN [J].Chem. Commun., 2002, (2): 156-157.
[109] S. Liu,L. H. Xie, B. Gao, C. D. Zhang, C. Y. Sun, D. H. Li and Z. M. Su. An
organic–inorganic hybrid material constructed from a three-dimensional coordination complex cationic framework and entrapped hexadecavanadate clusters [J]. Chem. Commun.,2005, 5023–5025.
[110] L. J Chen, C. Z. Lu, X. He, Q. Z. Zhang, W. B. Yang and X. H. Lin. Hydrothermal synthesis and structure of a novel 3D framework based on xi-octamolybdate chains:[Cu2(quinoxaline)2Mo4O13]n[J]. J. Solid State Chem., 2006, 179(8): 2541-2546.
[111] C. M. Liu, D. Q. Zhang and D. B. Zhu. 3D supramolecular array assembled by cross-like arrangement of 1D sandwich mixed molybdenum-vanadium polyoxometalate bridged coordination polymer chains: hydrothermal synthesis and crystal structure of{[(Mo5Mo3V8O40)(PO4)][Ni(en)2]}[Ni(en)2]2·4H2O [J]. Cryst. Growth Des., 2005, 5(4),1639-1642.
[112] S. T. Zheng, J. Q. Xu and G. Y. Yang. Hydrothermal syntheses and structural characterization of two
novel
arsenic-vanadium
clusters:
[Co(2,2'-bpy)3]2[As8V14O42(H2O)]
·
3H2O
and[2,2'-bpy]
VI
V
IV
4-
[Ni(2,2'-bpy)3]2[As8V14O42(H2O)]·3H2O [J]. J. Cluster Science., 2005, 16(1):23-37.
[113] Y. P. Ren, X. J. Kong, X. Y. Hu, M. Sun, L. S. Long, R. B. Huang and L. S. Zheng. Influence of steric hindrance of organic ligand on the structure of Keggin-based coordination polymer [J]. Inorg. Chem., 2006, 45(10): 4016-4023.In
[114] Y. P. Ren, X. J. Kong, L. S. Long, R. B. Huang and L. S. Zheng. Anion-dependent assembly of cyclic structure [J]. Cryst. Growth Des., 2006, 6, 572-576.
[115] P. Q. Zheng, Y. P. Ren, L. S. Long, R. B. Huang and L. S. Zheng. pH-dependent assembly of Keggin- based supramolecular architecture[J]. Inorg. Chem., 2005, 44, 1190-1192.
[116] X. J. Kong, Y. P. Ren, P. Q. Zheng, Y. X. Long , L. S. Long, R. B. Huang and L. S. Zheng. Construction of polyoxometalates-based coordination polymers through direct incorporation between polyoxometalates and the voids in a 2D network [J]. Inorg. Chem., 2006, 45, 10702-10711.
[117] D. Hagrman, P. J. Hagrman and J. Zubieta. Solid-state coordination chemistry: The self-assembly of microporous organic-inorganic hybrid Frameworks constructed from tetrapyridylporphyrin and bimetallic
oxide chains or oxide clusters [J]. Angew. Chem., Int. Ed., 1999, 38, 3165-3168.
[118] D. Hagrman, C. Zubieta, D. J. Rose, J. Zubieta and R. C. Haushalter. Composite solids constructed from one-dimensional coordination polymer matrices and molybdenum oxide subunits: Polyoxomolybdate clusters within [{Cu(4,4'-bpy)}4Mo8O26] and[{Ni(H2O)2(4,4'-bpy)2}2Mo8O26] and one-dimensional oxide chains in[{Cu(4,4'-bpy)}4Mo15O47]·8H2O [J]. Angew. Chem., Int. Ed., 1997, 36(8): 873-876.
[119] A. Muller, F. Peters, M. T. Pope and D. Gatteschi. Polyoxometalates: Very large clustersNanoscale magnets [J]. Chem. Rev., 1998, 98(1): 239-271.
[120] J. M. Knaust, C. Inman and S. W. Keller. A host-guest complex between a metal-organiccyclotriveratrylene
analog
and
a
polyoxometalate:
[Cu6(4,7-phenanthroline)8-(MeCN)4]·2PM12O40(M = Mo or W) [J]. Chem. Commun., 2004, (5): 492-493. [121] M. L. Wei, C. He, W. J. Hua, C. Y. Duan, S. H. Li and Q. J. Meng. A large protonated watercluster H(H2O)27in a 3D Metal-Organic Framework [J]. J. Am. Chem. Soc., 2006, 128,13318-13319.
+
因篇幅问题不能全部显示,请点此查看更多更全内容