DecayofChargedHiggsbosoninascenarioofSUSY
breakinginspiredneutrinomass
Gi-CholChoa),SatoruKanekoa)∗andAyaOmoteb)
a)
DepartmentofPhysics,OchanomizuUniversity,Tokyo112-8610,Japan
b)
GraduateSchoolofHumanitiesandSciences,OchanomizuUniversity,Tokyo,
112-8610,Japan
Abstract
Insomeclassofsupersymmetricmodels,smallneutrinomassisgivenasaconsequenceofthesupersymmetry(SUSY)breaking.Phenomenologicallyinterestingfeaturesofthisscenarioareasfollows:(i)theright-handedsneutrinomasscouldbeaslowasTeVscaleduetotheGiudice-Masieromechanism,and(ii)ascalartrilinearinteractionofHiggs-slepton-(right-handed)sneu-trinocouldbesizablewithoutsuppressionbythesmallneutrinoYukawacoupling.Westudysomephenomenologicalaspectsofthisscenariofocusingonthescalartrilinearinteraction.Weshowthatthe1-loopcorrectionbysneutrinoexchangetothelightestHiggsbosonmassdestruc-tivelyinterfereswithtop-stopcontributionsintheminimalSUSYStandardModel.WefindthatadecayofchargedHiggsbosonintosneutrinoandchargedsleptonissizablyenhancedandhenceitgivesrisetoadistinctivesignalatfuturecolliderexperimentsinsomeparameterspace.
1Introduction
SmallnessofneutrinomassisoneoftheimportantcluestophysicsbeyondtheStandardModel(SM).Anattractiveexplanationontheoriginofsmallneutrinomassistheseesawmechanism[1].Intheseesawmechanism,aheavyright-handedneutrinoisintroducedanditcouplestoSU(2)LdoubletneutrinoandHiggsbosonthroughtheYukawacouplingYν.Afterdiagonalizingtheneutrinomassmatrix,asmallermasseigenvalueofneutrino,mν,isgivenby
mν≃(Yνv)2/mN,
(1)
wheremNandvarethemassofright-handedneutrinoandthevacuumexpectationvalue(v.e.v.)oftheHiggsboson,respectively.IftheYukawacouplingYνisoforderunity,beconsistentwithresultsofneutrinoexperiments.Thenonemaycomplainthelargehierarchybetweenthescaleoftheseesawmechanism(mN)andtheelectroweakscale(v).Furthermoreitishopelesstoconfirmtheseesawmechanismthroughsearchingfortheright-handedneutrinoatcolliderexperiments(atrialtotesttheseesawmechanismwithhypotheticaloutcomeoffutureexperimentsisproposedinref.[3]).Thusitmaybeworthconsideringapossibilitytolowerthescaleofseesawmechanism(scaleofright-handedneutrino)aslowastestableatcolliderexperiments,say,O(100GeV−1TeV),oralternativetotheseesawmechanismfromaphenomenologicalpointofview.
Ithasbeenarguedpossibilitiestoexplainthesmallneutrinomassasaconsequenceofsupersymmetry(SUSY)breakinginrefs.[4,5,6].Somephenomenologicallyviablepointsofthisclassofmodelsare(i)light(TeVscale)right-handedsneutrinoduetotheGiudice-Masieromechanism[7]and(ii)enhancementofscalartrilinearinteractionamongtheright-handedsneutrino,left-handedsleptonandHiggsbosons.Both(i)and(ii)canbe,forexample,realizedasfollows.LetusfirstintroduceachiralsuperfieldXwhichisaSMgaugesingletbutchargedunderacertainglobalsymmetry.Thisglobalsymmetrymayallownon-renormalizableoperatorssuchas
XX†
theright-handedneutrinoshouldbeheavyenough,say,mN∼1011GeV/(mν/1eV),to
MP
LHuN,(3)
wheredimensionlesscouplingswithO(1)magnitudearesuppressed.In(2)and(3),LandNdenotetheleft-handedleptonandright-handedneutrinosuperfields,respectively.
2
TheHiggssuperfieldwiththehyperchargeY=1/2isrepresentedbyHu,andMPisthereducedPlanckmass.SupposethattheF-componentoftheXfielddevelopsav.e.v.F∼m3/2MPduetotheSUSYbreaking,wherem3/2isthegravitinomass.ThentheD-componentof(2)leadstotheright-handedsneutrinomassas
XX†
MP
LHuN
F
→AνℓH
NotethatbothmνuRandAνareoforderthegravitinoνR.(5)
mass∼O(TeV).Moreoverthescalartrilinearinteractionisnotsuppressedifadimensionlesscouplingin(3)isoforder
unity.
IntheminialSUSYSM(MSSM),theSUSYbreakingscalartrilinearinteractionsofsquarkorsleptonsareparametrizedbyAfYf,whereAfandYfarethescalartrilinearcouplingandtheYukawacouplingforflavorf,respectively.Thescalarthree-pointverticesare,therefore,suppressedbysmallYukawacouplingsforthefirsttwogenerationsofsquarksandsleptons.Inthemodelsofrefs.[4,5,6],however,thescalartrilinearinteractionoftheright-handedsneutrinoisnotsuppressedbytheneutrinoYukawacoupling,asmentionedabove.
Afewcommentsonthisclassofmodelsareinorder.Inaseriesofnon-renormalizable
operators((2),(3),etc),therearelepton-numberviolatingoperatorsingeneral.Ifsuchoperatorsareforbiddenbyanappropriatediscretesymmetry,theseesawmechanismdoesnotworkandtheDiracneutrinomassshouldbegivenby(3)withtheA-componentv.e.v.AoftheX-field.Then,tosatisfytheexperimentallimit,arelationA≪
ofchargedHiggsboson[4].OwingtoAν,thedecayofchargedHiggsbosonintothesneutrinoandselectroncouldbeenhancedascomparedtotheMSSM.Wefindthat,insomeparameterspace,thebranchingratioofthisdecaymodecanbeaslargeas10%,anditmaybedetectableatfuturelinearcolliderexperiments.Inourstudy,weneglectthegenerationmixinginboththeleft-andright-handedsneutrinosforsimplicity.Al-thoughthisscenariohasapossibilityiftheneutrinoisMajoranaorDirac,ourstudyisavailableinbothcasesiftheSUSYbreakingB-termofsneutrinointheMajoranacaseisassumedtobesmallenoughsothat,inadditiontosuppressthe1-loopcorrectiontothemassoflighterneutrino,thesneutrinomassmatrixhascommonstructureinbothcases.
2MassandInteractions
Wefirstreviewthesneutrinomassesandinteractionstofixournotation.WhentheSUSYbreakingB-termofsneutrinoisneglected,themassmatrixofsneutrinosina
L,νR)isgivenbybasisof(ν
2
Mν˜=2mν
L
=m2L+
2mAνvsinβνL
2Aνvsinβmν
R
,(6)
1
anunitarymatrixUν:
2+v2≈246GeV.Themassmatrix(6)canbediagonalizedusingvud
2(7)satisfiesthefollowingIntheMSSM,thesneutrinomassisgivenby(7).Notethatmν
L
2
Uν=diag(mUν1,mν2),νMν
†
(mν1 LduetotheSU(2)Lsymmetry:relationwiththemassofleft-handedselectrone 222m2e˜L−mν˜L=(−1+sW)mZcos2β. (9) Sincecos2β<1fortanβ>1,themassofsneutrinointheMSSMisalwayssmallerthantheselectronmasswhentanβ>1.Ontheotherhand,thelightersneutrinomass(8)isindependentoftheselectronmassandcanbemuchlighterthanthesneutrinointheMSSM. 4 350(a)150300250(b)m~= 180[GeV]eL m~ [GeV]ν1Aν [GeV]m~= 180 [GeV]eL 200m~= 150[GeV]eL 100m~= 150 [GeV]eL 150100m~= 120[GeV]eL m~= 120 [GeV]eL 50050050Aν [GeV]10001234652m~/m2νR~νL78910Figure1:(a):Thelightersneutrinomassmν1asafunctionofAνfortanβ=3.Three linescorrespondtomeL=120GeV(solid),150GeV(dashed)and180GeV(dotted).The 2=m2.(b):ThecouplingAasafunctionofaratioresultsareobtainedbytakingmννLνR 2/m2fortanβ=3.mνν R L 3.ThreelinescorrespondtomeL=120GeV(solid),150GeV(dashed)and180GeV (dotted).Fortheright-handedsneutrinomass,wetakemνR=mνLforconvenience.sneutrinomuchlighterthanthatintheMSSM. InFig.1(a),weshowthelightersneutrinomassmν1asafunctionofAνfortanβ= Notethatthemassmν1atAν=0correspondstothatintheMSSM.Thefiguretells R L usthatthelargeleft-rightmixingofsneutrinowhichisinducedbylargeAν,makesa 2/m2.ThreelinesFig.1(b)showsthetrilinearcouplingAνasafunctionofmνν correspondtodifferentvaluesoftheselectronmassasFig.1(a).Thelightersneutrinomassmν1isfixedat80GeV.ItcanbeseenfromthefigurethatthecouplingAνincreasesbosons.ForsimplicitywetakealimitoflargepseudoscalarmassmA.Thenthelight-estHiggsbosonhcanbeapproximatelyidentifiedwiththeSMHiggs.Theinteraction −H−)arethengivenasfollows:i−ℓslepton-chargedHiggsboson(νi−νj−hinteraction:•ν i−νj−h)andsneutrino-Lagrangiansofsneutrino-sneutrino-lightestHiggsboson(ν 2/m2islargerthanone.whenmνν R L NextwesummarizetheinteractionLagrangianofsneutrino,sleptonandHiggs L=Aν i,j ∗∗ jh+h.c.i(Uνν)1i(Uν)2jν (i,j=1,2),(10) 5 14010.99135tanβ = 30,m~ = 300GeVeL0.980.97tanβ = 30,m~= 300GeVeL130tanβ = 30,mh [GeV]m~ = 500GeVeLRh0.960.950.94tanβ = 3m~= 300GeVeLtanβ = 30m~= 500GeVeL125tanβ = 3,meL~ = 300GeV120tanβ = 3,0.93115(a)050010001500Aν [GeV]m~ = 500GeVeL0.920.91(b)tanβ = 3m~= 500GeVeL050010001500Aν [GeV]200011020000.9Figure2:(a)ThelightestHiggsbosonmassmhasafunctionofAν.Eachlinecorrespondtocombinationsoftanβ=3,30andmeL=300,500GeVasindicated.The1-loopcorrectionfromthetop-stoploopisevaluatedfollowingref.[13]usingthestopmassm=1TeV.TheHiggsmassmhatAν=0correspondstotheMSSMprediction.(b)t TheratioRhdefinedineq.(17)asafunctionofAν. −H−interaction:i−ℓ•ν νiℓH∗+ iL=gνℓH+h.c., ∗g∗νiℓH− msin2βU=Aνcosβ(U)−gWν1iν2i 2 − (11) (i=1,2). (12) 3SneutrinocontributiontothelightestHiggsbosonmass ItisknownthatthelightestHiggsbosonmassmhreceiveslarge1-loopcorrectionsmainlyfromthetopquarkandthestopexchangingdiagram[9,10,11].InthescenarioofTeV RwithsizableAν,theνL-νR-hinteraction(10)couldgiveanewcontributiontoscaleν thelightestHiggsbosonmassat1-looplevel.Usingtherenormalizationgroupmethodusedinref.[10],weevaluatethesneutrinocontributiontomh. LetustakethelargelimitoftheSUSYbreakingmassscalemSUSYsothatphysicsbelowmSUSYisdescribedbytheStandardModel.ThenthelightestHiggsbosonmassmhissimplyparametrizedby 2 m2h=λv, (13) whereλisaquarticcouplingintheHiggspotential.Notethatthequarticcouplingatthetreelevel,λtree,satisfiestheSUSYrelation λtree= 1 wheregYandgaretheU(1)YandSU(2)Lgaugecouplings,respectively.TheradiativecorrectionstothequarticcouplingλintheMSSMcanbefoundin,forexample,ref.[10].InthescenariooflargeAν,theinteraction(10)givesrisetothesneutrinoexchangingboxdiagramasthe1-loopcorrectiontothequarticcouplingλ.Thesneutrinocontribution,λν,canbeevaluatedas λν=− A4ν 222(m21−m2)(m3−m4) 2m21+m3 m1m2 + 2m22+m4 m2(16) − 2m21+m4 m1 − 2m22+m3 . InFig.2(a),wedepicttheAνdependenceofthelightestHiggsbosonmassmh.Wealsocompare,inFig.2(b),aratiooftheHiggsbosonmassinourscenarioandintheMSSMwhichisdefinedas Rh≡ mh 16 mSUSY 4 <0.(18) Theminussigninr.h.s.of(18)istheoriginthatmhisloweredviathesneutrinocontribution.Fig.2(b)showsthatthenegativecontributiontomhfromthesneutrinodiagramislessthan5%forAν<∼1TeV. 4DecayofchargedHiggsboson =ecouldbeadistinctiveprocessofourscenariobecausethatsuchparticular,acaseofℓ ,whereH−standsforachargedHiggsboson.In+ℓNextweexamineadecayH−→ν 7 processisstronglysuppressedintheMSSMduetotheelectronYukawacoupling.So, =einthefollowingstudy.IntheMSSM,itisknownthat,weconsideronlythecaseofℓ−formH−>∼200GeV,Hdominantlydecaysintothetopandbottomquarksowingtothe sizableYukawacouplings(forareviewofvariousdecaychannelsofthechargedHiggs regionbecausethatthedecayvertexisproportionaltoAνcosβ(12).Thedecaywidth bosoninthesupersymmetricmodels,seeref.[12]).Theτ+ντmodeissubdominant forlargetanβ(>∼10)duetothetau-Yukawacoupling.Ontheotherhand,whenAνis 1+eismuchenhancedinsmalltanβsizable,itisexpectedthatthedecaymodeH−→ν ofH−→ν 1+eisgivenasfollows:Γ(H−→ν 1+e)=1 m, H− 2 me modecouldbeas+ℓItcanbeseenfromFig.3thatthebranchingratioofH−→ν largeas10%forsmalltanβ(<∼7).IntheMSSM,thechargedHiggsbosoncandecayintoLandeR.Forcomparison,wefixthemassofeRasmνeR=meL=200GeV.ThentheLduetotheSU(2)Lrelation(9)(notethatmmuchlighterthaneeR=meL=200GeV). L+eRiskinematicallyforbiddenbecausethesneutrinoνLcannotbedecaymodeH−→ν Therefore,ifthechargedHiggsbosonmassdoesnotdiffersomuchfromthemassesof L+eRintheMSSMisstronglysuppressed.chargedsleptons,thedecayH−→ν LdominantlydecaysintothelightestneutralinotheinputsusedinFig.3,theselectrone 1+eLinsomedetail.ForourchoiceofNextwestudyasignalofthedecayH−→ν roughly10%forsmalltanβregion,aprobabilitywhichwefindanelectronfromthiselectronisalsocomingoutfromtheWbosonofthedecayH−→W+h,andthe −+χ0.FromFig.3wefindthatBr(H−→W+h) −+χ0,thethebackgroundfromH−→W+hismuchsuppressed.IncaseofH−→χ 1+eL)×Br(eL→e+χ0decaymodecanbeestimatedasBr(H−→ν1)≃10%.The L→χ01+eLmodeisandanelectron,e1+e.Then,sincethebranchingratiooftheν −+χ0)×Br(χ−→e+ν)isabout0.3%.pereachleptonflavor.ThusBr(H−→χ −+χ0)isabout1%andBr(χ−→e+ν)isroughly30%branchingratioisBr(H−→χ AsshowninFig.3(b),however,ifthelightercharginoisdominantlygaugino,the branchingratioofthechargino-neutralinomodeincreases,sothatthebranchingratio −+χ0modeofthechargedHiggsdecayasBr(H−→theelectronisfoundintheχ 1+eLisrelativelydecreased.InthiscaseweestimatetheprobabilitythatofH−→ν L+ν1decay.Weconcludethat,eveninourspecificchoiceofiscomingoutfromthee −+χ0modecouldbeaseriousbackgroundtosearchthedecayparameterset,theχ 1+eLwhenthecharginoandneutralinoarealmostgauginos.H−→ν RwithunsuppressedWewouldliketodiscussthetestabilityofthescenariooflightν −+χ0)×Br(χ−→e+ν)≃10%.Thiscompeteswiththeprobabilitythatanelectronχ pointistoidentifythattheobservedelectroncomesfromH−.ItcouldbeachievedusingthepairproductionofthechargedHiggsbosons.InapairproductionofthechargedHiggs,oneofthechargedHiggsbosonscanbeidentifiedusingthet+bmode.ThenifanelectronisobservedinthechargedHiggspairproductionitmustbeidentifiedasone 1+eL.Forexample,atthefromthedecayofanotherchargedHiggsthroughH−→ν 1+eL→e+EAνatfuturecolliderexperimentsusingthedecayH−→νT.Animportant e+e−linearcollider(ILC),thetypicalsizeofthecrosssectionofthechargedHiggsboson 9 1t + b1∼− + χ∼0χt + bτ + νBranching ratio0.1W + h (MSSM)Branching ratio0.1τ + νW + h (ν)W + h0.01−∼0∼χ + χ(MSSM)~∼e + ν1∼∼e + ν10.01(a)46810121416tanβ182022244W + h(ν)(b)8101214tanβ161820226Figure3:ThebranchingratiosofchargedHiggsbosondecayformH−=350GeV.Thedecaymodeintosneutrinoandselectronisfoundforme˜L=200GeV,mν˜1=50GeV,Aν= =150GeVwithM2/µ=5500GeV.Thechargino-neutralinomodeisobtainedformχ−1 (a)and1(b). pairisO(1−10)(fb)formH−=O(100GeV)[12].Assumingtheintegratedluminosityas100fb−1,itisexpectedthat100∼1000chargedHiggspairsareproducedinayear.Fig.3(a)tellsusthat,whentanβ=3,onlyfewelectronsappearfrom1000charged +ν1HiggsbosonsintheMSSM(theW+hmode),whileabout160electronsfromthee modeisexpectedinourscenario.Therefore,anexcessofelectronsfromthechargedHiggsdecaycouldbeasignaloftheTeVscaleright-handedsneutrinowithunsuppressedtrilinearcouplingAν. 5Summary Inthispaper,wehavestudiedphenomenologyofthescenarioofTeVscaleright-handedsneutrinoinspiredbymodelsofSUSYbreakinginspiredneutrinomass[4,5,6].TheimportantpredictionofthisscenarioisthatthesneutrinotrilinearcouplingAνcouldbesizableandisnotsuppressedbytheneutrinoYukawacoupling.Weexaminedtwophenomenologicalconsequencesofthisscenario.Wefoundthatthesneutrinocontribu-tiontothelightestHiggsbosonmassisdestructivelyinterfereswiththeordinaryMSSMcontributions.ThusthelightestHiggsbosonmassmaybeloweredinthismodelviasneutrinoexchangewithlargeAν.ThelargeAνalsoaffectsthedecayofchargedHiggsinsomeparameterregionandthebranchingratioisroughly∼10%forsmalltanβ.In 1+eLcouldbesubdominantdecaymodeboson.ItisshownthattheprocessH−→ν 10 suchparameterregion,weexpectthatroughly200electronsperyearfromthechargedHiggsdecayattheILCexperimentswiththeintegratedluminosity100fb−1.OntheotherhandtheMSSMpredictsonlyfewelectronsfromthechargedHiggsdecay.TheexcessoftheelectronsinthechargedHiggsdecay,therefore,couldbeasignalofthe Rscenario.TeVν Acknowledgments TheworkofG.C.C.wassupportedinpartbytheGrant-in-AidforScienceResearch,MinistryofEducation,ScienceandCulture,Japan(No.K175402386).TheworkofS.K.wassupportedbytheJapanSocietyofPromotionofScience. References [1]P.Minkowski,Phys.Lett.B67,421(1977);T.Yanagida,inProceedingsofthework-shoponunifiedtheoryandbaryonnumberintheuniverse,O.SawataandA.Sug-amotoeds.,KEKreport79-18,Tsukuba,Japan1979;M.Gell-Mann,P.RamondandR.Slansky,Complexspinorsandunifiedtheories,inSupergravity,D.Z.Freed-manandF.vanNieuwenhuizeneds.,NorthHolland,Amsterdam1979.[2]M.FukugitaandT.Yanagida,Phys.Lett.B174,45(1986).[3]M.R.BuckleyandH.Murayama,arXiv:hep-ph/0606088. [4]N.Arkani-Hamed,L.Hall,H.Murayama,D.SmithandN.Weiner,Phys.Rev. D64,115011,2001. [5]F.BorzumatiandY.Nomura,Phys.Rev.D64,053005(2001).[6]J.March-RussellandS.M.West,Phys.Lett.B593,181(2004).[7]G.F.GiudiceandA.Masiero,Phys.Lett.B206,480(1988). [8]F.Borzumati,K.Hamaguchi,Y.NomuraandT.Yanagida,hep-ph/0012118.[9]Y.Okada,M.YamaguchiandT.Yanagida,Prog.Theor.Phys.85,1(1991).[10]Y.Okada,M.YamaguchiandT.Yanagida,Phys.Lett.B262,54(1991).[11]J.R.Ellis,G.RidolfiandF.Zwirner,Phys.Lett.B257,83(1991);ibid.Phys. Lett.B262,477(1991);H.E.HaberandR.Hempfling,Phys.Rev.Lett.66,1815(1991). 11 [12]A.Djouadi,hep-ph/0503173. [13]H.E.Haber,R.HempflingandA.H.Hoang,Z.Phys.C75,539(1997).[14]W.M.Yaoetal.[ParticleDataGroup],J.Phys.G33,1(2006). 12 因篇幅问题不能全部显示,请点此查看更多更全内容