您的当前位置:首页正文

多格点相互作用对横向磁场作用下xy型自旋链中非平衡态热力学性质的影响

2022-03-03 来源:好走旅游网
物 理 学 报   Acta  Phys.  Sin.   Vol. 68, No. 24 (2019)    240506

多格点相互作用对横向磁场作用下XY型自旋链中非平衡态热力学性质的影响*

贺志1)2)†    余敏2)    王琼2)

1) (洞庭湖生态经济区建设与发展湖南省协同创新中心, 常德 415000)

2) (湖南文理学院数理学院, 常德 415000)(2019 年4 月10日收到; 2019 年9 月1日收到修改稿)

近年来, 封闭系统中非平衡热力学性质, 特别是自旋链中经过一个淬火过程后的平衡热力学性质已经成为了量子热力学研究中的一个热点之一. 研究了横向磁场作用下含XZX+YZY型三体相互作用的XY自旋链中的非平衡态热力学性质. 具体考虑了当XY型链中横向外磁场发生一个突变(淬火)时链中XZX+YZY三格点相互作用分别对淬火过程中产生的平均功、功涨落和不可逆熵产生等热力学量的影响. 研究显示: XZX+YZY三格点相互作用可能对平均功的增加起正面作用和负面作用, 关键取决于初始外磁场强度的取值. 接着, 还发现: 通过调节XZX+YZY三格点相互作用强度可以很有效地抑制功涨落. 最后, 考虑了不可逆熵产生在不同XZX+YZY三格点相互作用下随外磁场强度的变化关系, 结果发现: 不可逆熵产生在临界磁场附近会出现特殊的尖峰特征, 并且尖峰值随XZX+YZY三格点相互作用的增加有不断减少的趋势, 同时给出了相应的物理解释.

关键词:含多格点相互作用的XY自旋链, 平均功, 功涨落, 不可逆熵产生PACS:05.70.Ln, 05.30.Rt, 05.40.–a, 75.10.Pq

 DOI: 10.7498/aps.68.20190525

模型中发生一个淬火过程时功的统计性质, 发现了

1   引 言

随着基于超冷原子体系[1−3]的实验研究取得了一系列的重要进展, 人们重新对封闭系统中非平衡热力学的研究产生了浓厚的兴趣. 特别地, 一些普适的量子涨落关系如Jarzynski等式[4]、Tasaki-Crooks关系[5,6]的提出, 极大地促进了非平衡热力学在理论[7−11]和实验[12−16]上的发展. 而利用突然改变系统参数(淬火)手段, 是实现非平衡过程的一种重要方式. 近年来, 研究量子多体系统如自旋链中经过一个淬火过程后的非平衡热力学性质迅速成为了一个热点课题. Silva[17]研究了横向伊辛 功分布会在临界磁场表现奇异性. Dorner等[18]研究了横向伊辛模型中包括平均功和不可逆熵产生等量子热力学量, 并给出了热力学量的精确表达式. Bayocboc和Paraan[19]研究了一般XY型自旋链模型中功分布涨落以及不可逆熵产生等量子热力学量在不同各向异性参数下随外磁场变化关系.Zhong和Tong[20]研究了XZY–YZX三格点相互作用对XY型自旋链模型中平均功和不可逆熵产生等量子热力学量的影响. Wang等[21]研究了Dzyaloshinsky-Moriya (DM)相互作用对XY型自旋链模型中平均功、功涨落以及不可逆熵产生等的影响. Xu等[22]研究了量子相干性对功的统计性

*  中国博士后科学基金(批准号: 2017M622582)、湖南省教育厅优秀青年项目(批准号: 16B177)、湖南省应用特色学科“电子科学与技术”和湖南省重点实验室“光电信息集成与光学制造技术”资助的课题.†  通信作者. E-mail: hz9209@126.com

© 2019 中国物理学会  Chinese Physical Society

240506-1

http://wulixb.iphy.ac.cn

物 理 学 报   Acta  Phys.  Sin.   Vol. 68, No. 24 (2019)    240506

质的影响. 我们注意到, 自旋链系统中除了平时考虑的近邻两格点相互作用外, 可能还存在XZY–YZX型和 XZX+YZY 型三格点相互作用.Roger等[23]研究发现了三格点相互作用能用来描述固态3He的磁性机制. Titvinidze和Japaridze[24]研究了XZX+YZY型三格点相互作用对推广的XY自旋链模型中相图的影响. Cheng和

Liu[25, 26]

分别研究了XZY–YZX三格点相互作用对两量子比特与各自XY自旋链相互作用模型中的量子纠缠, 以及XZX+YZY型三格点相互作用对 XY自旋链模型中量子相变的影响. Lian[27]研究了XZX+YZY三格点相互作用对一个量子比特系统与XY自旋链耦合模型中Loschmidt echo (LE)演化的影响. Shan[28]研究了XZX+YZY三格点相互作用对XY自旋链系统中的几何相位与量子相变的影响. 郗玉兴等隐形传态量子的影响.

从以上研究的结果看, 虽然XZY–YZX三格点相互作用[20]和DM相互作用[21]在一个淬火过程中的非平衡量子热力学性质的影响已经分别被人们研究. 但到目前为止, 还未见到关于XZX+YZY三格点相互作用对于一个淬火的XY自旋链模型中非平衡量子热力学的影响的研究报道. 另外, 据我们所知: XZY–YZX三格点相互作用[20]和DM相互作用[21]在XY自旋链模型中所起的作用只体现在能谱中, 它们同由波戈留波夫变换决定的本征态是无关的. 然而, XZX+YZY型三格点相互作用在XY旋链模型中的作用不仅体现在能谱中, 也同由波戈留波夫变换决定的本征态密切相关[26−28]. 它们之间的这个显著区别是促使本文研究的主要初衷之一. 因此, 本文研究了XZX +YZY三格点相互作用对于一个淬火的XY自旋链模型中平均功、功涨落和不可逆熵产生等量子热力学量的影响. 研究发现: XZX+YZY三格点相互作用可能对 XY自旋链淬火过程中平均功的增加起正面作用和负面作用, 关键取决于初始外磁场强度的取值. 另外也发现: 通过调节XZX + YZY三格点相互作用强度可以很有效地抑制淬火过程中的功涨落. 总之, 本文获得的结果对进一步研究淬火过程中的非平衡态热力学有一定的借鉴意义. 本文结构安排如下: 在第2节简要介绍了非平衡态热力学中的一些重要物理量, 如功分布、平均功、功涨

[29]

落、不可逆熵产生等的定义; 在第3节中给出了研究的理论模型及其精确解; 第4节是数值模拟结果的理论分析和讨论; 第5节对文中获得的结果做了简要总结和展望.

2   非平衡态热力学: 平均功、功涨落和不可逆熵产生

本节简要地介绍在非平衡态热力学中一些重要的概念和公式, 如平均功、功涨落、不可逆熵产生等. 这里考虑一个量子系统的动力学, 它由一个含有外界控制参数(或者叫功参数) λ(t) 的哈密顿量 H(λ(t)) 来决定. 假设对于一个固定的功参数

λ(t⩽0)=λ0 , 系统最初与一个热库(温度为β=1/T )被制备在一个热平衡态, 即系统的初态

研究了XZX+YZY和就可以用吉布斯热平衡态来表示为

XZY–YZX 三格点相互作用对XXZ自旋链模型中

e−βH(λ)ρG(λ):=,(1)Z(λ)[]其中配分函数 Z(λ):=Tre−βH(λ) . 当系统的功参

数从 λ0→λτ  (对应时间 t=0→t=τ) 变化时, 系统哈密顿量的改变对应有 H(λ0)=

H(λτ)=

nεn

(λ0)|n⟩⟨n|→

(ε′m)

mεm(λτ)|m⟩⟨m| , 其中 |n⟩(|m⟩) ,  εn

分别表示系统初始(末时)哈密顿量的本征态和本征值. 这里值得注意的是, 根据文献[7]给出的结果: 功 W 不是一个可观察量. 那么, 其平均功 ⟨W⟩不能通过常用的计算公式如 ⟨W⟩=Tr[ρW] 来计算,而要通过所谓的功分布来计算. 考虑到功参数从

λ0→λτ 变化的过程中所作的功W可以通过先后

完成两次能量投影测量来定义[7], 且两次能量投影测量具有量子统计性质, 所以, 一般用所谓的功分布 P(W) 来表示功W. 功分布 P(W) 有定义如下[7]:

P(W)=∑n,mτ′p0npm|nδ[W−(εm(λτ)−εn(λ0))],(2)−βεn(λ0)

/Z(λ0) 表示对系统最初热平衡其中 p0n=e

态进行第一次投影测量(用本征基矢 |n⟩ )获得能量

2

本征值为 εn(λ0) 的概率; 而 pτm|n=|⟨m|U(τ,0)|n⟩|

表示在第一次投影测量基础上系统经过幺正演化

¯exp−i/ℏU(τ,0)=T

{

τ

}

¯ 为时序算H(λ(t))  ( T

0

符), 在时刻 τ 进行第二次投影测量(用本征基矢

|m⟩ )获得能量本征值为 ε′m(λτ) 的概率. 一般地, 采

用方程(2)所示的功分布做傅里叶变换得到的特

240506-2

物 理 学 报   Acta  Phys.  Sin.   Vol. 68, No. 24 (2019)    240506

征函数来讨论较为方便. 为此, 功分布的特征函数通过下列方式定义:

H=−N[(∑1+γi=121−γyyxxzσiσi+1+σiσi+1+λσi2)∫χ(u)=[†dWeiuWP(W)iuH(λτ)=TrU(τ,0)eU(τ,0)e−iuH(λ0)]ρG(λ0).(3)]α(xzyzy)x−+σiσi+1σi+2,σσσ2ii+1i+2(8)其中参数N表示整个自旋链的格点数, 参数

kσi(k=x,y,z) 表示著名的3个泡利矩阵, 参数 γ 表

一方面, 由功的第n阶量的平均计算公式

⟨Wn⟩=

n

WnP(W)dW=(−i)∂uχ(u)|u=0 以及

n

n

累积量 Kn=(−i)n∂uln[χ(u)]|u=0 的定义可知: 平

示在XY平面中任意两个自旋粒子之间相互作用的各向异性参数, 参数 λ 表示施加在每个自旋粒子上的横向磁场强度, 以及 α 表示 XZX+YZY 型三格点相互作用强度. 在 XY自旋链系统模型中三格点相互作用可形象用图1来表示. 原则上, 可以研究当方程(8)中 γ ,  λ ,  α 三个参数中任意一个参数发生一个突变时的非平衡态热力学性质. 然而, 考

均功 ⟨W⟩ 及功的方差(也被称为功涨落) Σ=

2

W

2

−⟨W⟩ 能表示成

⟨W⟩=−i∂uχ(u)|u=0,2Σ2=(−i)∂uln[χ(u)]|u=0.22

(4)虑到施加在自旋粒子上的横向外磁场比较容易操控. 所以, 本文仅讨论当横向外磁场发生一个突变时方程(8)所示模型中的非平衡态热力学性质.

另一方面, 方程(2)中功分布的量子统计本质允许我们将热力学第二定律重新改写为 ⟨W⟩⩾∆F ,其中 ∆F 表示系统自由能的增量. 如果要将这个不等式写成等式, 则 ⟨W⟩ 和 ∆F 之间存在这样的关系:

⟨W⟩=⟨Wirr⟩+∆F , 其中 ⟨Wirr⟩ 被称为平均不可逆

i+1ii+2功. 这样可以得到平均不可逆功 ⟨Wirr⟩=⟨W⟩−

∆F . 进一步, 所谓的不可逆熵产生 ∆Sirr 被定义为[4]

图 1    带有XZX+ YZY三格点相互作用的XY自旋链系

统模型的示意图[24]

Fig. 1. Schematic representation of the structure of the XYmodel with XZX + YZY three site interaction[24].

∆Sirr=β⟨Wirr⟩=β(⟨W⟩−∆F).(5)特别地, 不可逆熵产生 ∆Sirr 是非平衡态过程中不可逆性的一个度量方式. 值得指出的是, 不可逆熵产生 ∆Sirr 也可等价地用一个给定时刻的密度算符与一个假设的吉布斯热平衡态之间的量子相对熵来表示[30]:

方程(8)所示的哈密顿量可通过著名的Jordan-Wigner变换、傅里叶变换和波戈留波夫变换被对角化

[26−28,32]. 

首先通过Jordan-Wigner

变换可以将自旋粒子映射为一维无自旋费米子, 它

∆Sirr=S[ρ(t)∥ρG(λt)],(6)们之间的算符关系通过如下方式联系:

其中 S(ρ∥ρ∗)=Tr(ρlogρ−ρlogρ∗) 表示任意两个态 ρ 和 ρ∗ 之间的相对熵. 特别地, 文献[18, 30, 31]研究表明: 当系统的哈密顿量在外界因素作用下经历一个突然改变(淬火)时, 这个淬火过程中产生的不可逆熵产生 ∆Sirr 能表示成淬火之前和淬火之后对应的吉布斯热平衡态之间的距离:

+σi=∏()+1−2c+cjjci,j这里 σi 代表自旋粒子的上升(下降)算符,σi

)(−)c+ici 代表费米算符. 进一步, 如果引入算符

∆Sirr=S[ρG(λ0)∥ρG(λτ)].(7)+Ai=c+i+ci ,  Bi=ci−ci , 那么自旋粒子所对应

的泡利算符能写成

3   理论模型及其精确解

本文将考虑一个一维带有XZX + YZY三格点相互作用的各向异性XY自旋链系统模型. 该模型对应的哈密顿量可表示成[24,26−28]

xσi=Ai∏(AjBj),z(AjBj),σi=AiBi.j240506-3

物 理 学 报   Acta  Phys.  Sin.   Vol. 68, No. 24 (2019)    240506

N∑[(++)()+H=−γcici+1+cici+1+c+c+ccii+1ii+1†dk=µkηk+iνkη−k,†d†−k=µkη−k+iνkηk,()(+)]++λ1−2c+cα+c+ccc.iii+2ii+2ii=1(16)(11)式中 µk=cos(θk/2),νk=sin(θk/2)) , 可得到

(√)∑

i2πki/N

叶变换如 ci=1/N , 以及波戈kdke

接下来, 对方程(11)右边按顺序分别做傅里

iνkη−k

††˜kηk+iν˜kη˜−µkηk+iνkη−k=µk.††µkη−˜kη˜−˜kη˜k,k+iνkηk=µk+iν留波夫变换如 dk=µkηk+对角化的形式

(µk=cos(θk/2),

(17)νk=sin(θk/2)) 后, 方程(5)中的哈密顿量能化成

∑k˜k/2),ν˜k/2) . 然后, 由方程其中 µ˜k=cos(θ˜k=sin(θ

(16)中第一式 ×µ˜k  + 第二式 ×(−iν˜k) 得到

H=()1†Λkηkηk−,2(12)†η˜k=(µkµ˜k+νkν˜k)ηk−i(˜νkµk−µ˜kνk)η−k†=cos(ϕk)ηk−isin(ϕk)η−(18)k,()˜其中 ϕk=θk−θk/2 . 类似地, 也可得到 η˜−k=†

cos(ϕk)η−k+isin(ϕk)ηk . 实际上, 自旋链系统对

其中能谱

[(]1/2)22πk4πk2πkΛk=2λ−cos−αcos+γ2sin2,NNN(13)角化的哈密顿量方程(12)也可等价地写成

并且

H===∑k()1†Λkηkηk−2Λk(†ηkηk2πktanθk=γsinN/(2πk4πkλ−cos−αcos,NN(14))∑k>0+†η−kη−k)−1∑k>0∑k>0且对于一个偶数N,  k=−(N−1)/2,···, (N−1)/2 .明显地, 当考虑 α=0 , 能谱

[(

Λk(nk+n−k−1)=Hk,(19)Λk=2λ−cos

2πkN

)2

+γ2sin2

2πkN

]1/2

††

其中 nk=ηkηk 和 n−k=η−kη−k 是粒子数算符. 这

样 |nk,n−k⟩(n±k=0,1) 就是 Hk 的能量本征态.

根据方程(18)与 η ,˜−k=cos(ϕk)η−k+ isin(ϕk)ηk

能将 Hk 和 H 的能量本征态之间的关系表示成k

退化成没有考虑 XZX+YZY 三格点相互作用的XY型自旋链的能谱[18,33,34].

本文考虑一个淬火过程, 即在XY型自旋链中, 通过外界的控制给自旋粒子的磁场从开始

t=0 时的 λ0 经过一个极小的时间 τ 突然改变到 λτ

的过程. 假设自旋链系统最初处在吉布斯热平衡态如方程(1)所示, 那么不难得到对应的配分函数

Z(λ0) 有

󰀉󰀉⟩⟩|0k,0−k⟩=cos(ϕk)󰀉˜0k,˜0−k+isin(ϕk)󰀉˜1k,˜1−k,󰀉󰀉⟩⟩|0k,1−k⟩=󰀉˜0k,˜1−k,|1k,0−k⟩=󰀉˜1k,˜0−k,󰀉󰀉⟩⟩|1k,1−k⟩=−isin(ϕk)󰀉˜0k,˜0−k+cos(ϕk)󰀉˜1k,˜1−k.(20)由于本文考虑的是系统的哈密顿量经历一个淬火过程(意味着系统还来不及演化), 所以自旋链系统自身演化的幺正算符 U(τ,0) 为一个单位算符, 这

Z(λ0)=2N=2N∏∏kcosh(βΛk(λ0)/2)cosh(βΛk(λ0)/2).2(15)样功分布的特征函数如方程(3)能简化为

k>0采用类似于上面的对角化程序, 那么在 τ 时刻自旋

(

[]1iuHτ−iuH0−βH0χ(u)=Treee.Z(λ0)∑∑k>0τ˜kH=τHk(21)链系统的哈密顿量有对角化形式 Hτ=

)

k

˜τ)×Λk(λ

这里†

η˜kη˜k−1/2 . 明显地, 在时刻 τ 的费米算符{{}}††η˜k,η˜k 和在开始 t=0 的费米算符 ηk,ηk 是不相

Hτ=H=0∑∑k>0(†)†˜kη˜kη˜k+η˜−η˜−1,Λk−k(†)†Λkηkηk+η−η−1.−kkk>0=k>0同的, 然而它们之间关系可通过下列方式得到. 首先考虑到波戈留波夫变换

利用方程(20), 方程(21)所示功分布的特征函数能够被获得:

240506-4

物 理 学 报   Acta  Phys.  Sin.   Vol. 68, No. 24 (2019)    240506

χ(u)==1∏∑−(iu+β)[Λk(nk+n−k+1)]˜nk+˜n−k+1)]e⟨nk,n−k|eiu[Λk(˜|nk,n−k⟩Z(λ0)n=0,1k>0}1∏{(iu+β)Λk−iuΛ˜k˜˜˜e[ecos2(φk)+eiuΛksin2(φk)]+e−(iu+β)Λk[e−iuΛksin2(φk)+eiuΛkcos2(φk)].Z(λ0)k<0(22)根据已有对于研究量子伊辛模型[18]和XY型自旋链模型[19,20]的研究结果可知, 一旦功分布的特征函数的表达式已知, 不难证明著名的Jarazynski等式[4]以及Tasaki-Crooks关系[5,6]都是成立的.只是本文考虑的模型与他们研究的模型稍有不同,而实际的证明过程是相同的, 这里为了避免重复,证明过程在此省略.

进一步, 根据方程(4)中平均功及功涨落的定义, 本文考虑的模型中的平均功 ⟨W⟩ 和功涨落 Σ2能被获得精确的表达式:

][]}dχ(u)󰀉1{[󰀉−βH(λ0)−βH(λ0)⟨W⟩=−iTrH(λτ)e−TrH(λ0)e󰀉u=0=duZ(λ0)∑[Λk(λ0)−Λk(λτ)cos(2ϕk)]tanh[βΛk(λ0)/2]=k>0=∑[2(λ0−λτ)cos(θk)]tanh[βΛk(λ0)/2][2(λ0−λτ)cos(θk)]sinh[βΛk(λ0)],cosh[βΛk(λ0)]+1.(23)k>0=∑k>0Σ2={}∑4(λ0−λτ)2cosh2[βΛk(λ0)]+cosh[βΛk(λ0)]−sinh2[βΛk(λ0)]cos2(φk)k>0(cosh[βΛk(λ0)]+1)2(24)又根据著名的Jarazynski等式[4]

⟨−βW⟩Z(λτ)e==e−β∆F,Z(λ0)(25)Σ2 以及 ∆Sirr 随XZX+YZY 三格点相互作用 α 和

初始外磁场强度 λ0 的变化关系.

能获得

[]Z(λτ)∑cosh[βΛk(λτ)/2]−β∆F=ln=ln.(26)Z(λ0)cosh[βΛk(λ0)/2]k4   分析与讨论

当有了平均功 ⟨W⟩ 如方程(23)、功涨落 Σ2 如方程(24)以及不可逆熵产生 ∆Sirr 如方程(27)的精确表达式, 就可以具体研究模型中XZX+YZY三格点相互作用对它们的影响.

这样不可逆熵产生如方程(5)能退化成

∆Sirr=β⟨W⟩+∑kln]˜k(λτ)/2coshβΛcosh[βΛk(λ0)/2][]2˜k(λτ)/2coshβΛcosh2[βΛk(λ0)/2][]˜coshβΛ(λτ)+1cosh[βΛ(λ0)]+1[=β⟨W⟩+∑k>0ln4.1 XZX+YZY三格点相互作用对平均功

⟨W⟩ 及功涨落 Σ2 的影响

根据方程(23)和(24), 分别画了平均功 ⟨W⟩

.(27)=β⟨W⟩+∑k>0ln和功涨落 Σ2 在不同的三格点相互作用强度 α 和各向异性参数下随初始外磁场强度 λ0 的变化如图2和如图3所示. 首先从图2显示的平均功 ⟨W⟩ 在不同的 XZX+YZY 三格点相互作用强度 α 和各向异性参数下随初始外磁场强度 λ0 的变化关系可以得到如下3点结论. 1) 对于各种XZX+YZY 三格点相互作用强度 (α=0.0,0.2,0.6) , 平均功 ⟨W⟩ 随初

明显地, 平均功 ⟨W⟩ 如方程(23)、功涨落 Σ2 如方程(24)以及不可逆熵产生 ∆Sirr 如方程(27)这三个重要热力学量与外磁场强度的改变量

δλ=λτ−λ0 和初始外磁场强度 λ0 是密切相关的.

下面选定了一些参数如 δλ ,  γ ,  β  和 N, 研究 ⟨W⟩ ,

240506-5

物 理 学 报   Acta  Phys.  Sin.   Vol. 68, No. 24 (2019)    240506

始外磁场强度 λ0 的改变呈现单调递减到一个共同的稳定值的变化关系, 如此类似的关系也存在于其他自旋链模型如带有DM相互作用XY自旋链中[21].2) 这里存在一个临界的初始外磁场强度 λ0c , 当

λ0>λ0c 时, XZX+YZY三格点相互作用对平均

得到的结果是完全符合的. 我们注意到, 这一结果不同于文献[21]研究的带有DM相互作用XY自旋链中DM相互作用对平均功的影响. 在文献[21]中, Wang等发现: 在初始外磁场强度 λ0c 所取范围内(同本文中所取范围是相同的), DM相互作用对平均功 ⟨W⟩ 的增加总是起着一个正面的作用, 即在

0⩽λ0⩽2 范围内, 随着DM相互作用强度的增加,

功 ⟨W⟩ 的增加起着一个正面的作用, 即随着XZX+YZY三格点相互作用强度 α 的增加, 平均功

⟨W⟩ 也单调地增加; 而当 λ0<λ0c 时, XZX+YZY

平均功 ⟨W⟩ 也单调地增加. 之所以本文考虑的XZX+YZY三格点相互作用同DM相互作用对相同 XY型自旋链模型中平均功的影响有区别是因为: DM相互作用产生的效果只体现在能谱中[21],而相应能量本征态与DM相互作用是无关的. 而本文考虑的 XZX+YZY 三格点相互作用产生的效果不仅体现在如方程(13)的能谱中, 而且也体现在相应的能量本征态(14)中. 另外, 图2(b)也显示了类似的变化规律. 因此, 在本文考虑的模型中,XZX + YZY三格点相互作用对平均功 ⟨W⟩ 是起正面作用还是负面作用, 与初始外磁场强度 λ0 的

0-10

(b)

三格点相互作用对平均功 ⟨W⟩ 的增加起着一个负面的作用, 即随着三格点相互作用强度 α 的增加,平均功 ⟨W⟩ 会单调地减少. 为了更细致地阐明上述关系, 在图2(a)的内插图中分别给出了对于不同的 λ0 值(如 λ0=0.5,1 )平均功 ⟨W⟩ 随三格点相互作用强度 α 的变化. 明显地, 当选择 λ0=0.5 时, 平均功 ⟨W⟩ 随 α 的增加而单调地减少(见图2(a)内插图中的实线); 当选择 λ0=1 时, 平均功 ⟨W⟩ 随 α 的增加而单调地增加(见图2(a)内插图中的虚线). 总之, 图2(a)的内插图中曲线的变化趋势同前面所

0-10-20-30-40-50

(a)

-15-25-35-45

0=0.50=1.0

0

0.5

1.0

-20-30-40

=0=0.2=0.6

=0=0.2=0.6

0c0c

00.51.00

1.52.0

-50

00.51.00

1.52.0

图 2    平均功 ⟨W⟩ 在不同的三格点相互作用强度 α 和各向异性参数 γ  下随初始外磁场强度 λ0 的变化 (a) γ=0.1 ; (b) γ=0.8 ;其他的参数被设定为 β=100 ,  δλ=λτ−λ0=0.01 ,  N=5000

Fig. 2. Averaged work  ⟨W⟩  and work distribution fluctuation  Σ2  as a function of  λ0  under various  α  for  γ=0.1  (a) and

γ=0.8  (b). Other parameters are  β=100 ,  δλ=λτ−λ0=0.01  and  N=5000 .

0.100.080.0620.04

0.2

0.020

02(a)

0.6

=0=0.2=0.6

(b)

=0=0.2=0.6

0.4

00.51.00

1.52.000.51.00

1.52.0

图 3    功涨落 Σ2 对于不同的三格点相互作用强度 α 和各向异性参数 γ 随初始外磁场强度 λ0 的变化 (a) γ=0.1 ; (b) γ=0.8 ;其他的参数被设定为 β=100 ,  δλ=λτ−λ0=0.01 ,  N=5000

Fig. 3. Work fluctuation  Σ2  as a function of  λ0  under various  α  for  γ=0.1  (a) and  γ=0.8  (b). Other parameters areβ=100,   δλ=λτ−λ0=0.01  and  N=5000 .

240506-6

物 理 学 报   Acta  Phys.  Sin.   Vol. 68, No. 24 (2019)    240506

取值密切相关. 3) 随着各向异性参数 γ 越大, 三格点相互作用强度 α 对平均功 ⟨W⟩ 的影响就越小(比较图2(a)和图2(b)).

接下来, 进一步研究 XZX+YZY三格点相互作用强度 α 和各向异性参数 γ 对功涨落 Σ2 的影响.具体给出了功涨落 Σ2 对于不同的XZX+YZY三格点相互作用强度 α 和各向异性参数 γ 随初始外磁场强度 λ0 的变化, 如图3所示. 通过观察图3(a)和图3(b), 可以发现一些有兴趣的结果: 1)明显地, 通过调节三格点相互作用强度 α 可以很有效地抑制功涨落 Σ  (如短划线与点线). 2)当没有考虑XZX+YZY三格点相互作用如 α=0  (如实线所示)时, 功涨落 Σ 从开始经过一段平缓区域后突然单调衰减. 这表示功涨落 Σ 对较小的初始外磁场强度 λ0 是不敏感的, 而对较大的初始外磁场强度

λ0 比较敏感. 而当考虑了三格点相互作用如α=0.2,0.6 (如短划线和点线所示)时, 功涨落 Σ

2

2

22

∆Sirr 对于不同的 XZX+YZY 三格点相互作用强

度 α 随初始外磁场强度 λ0 的变化, 结果如图4所示. 其中图4(a)对应较小的各向异性参数 γ=0.1的情况; 而图4(b)对应较大的各向异性参数 γ=0.8的情况. 从图4(a)和图4(b)可以看到, 在低温下 (β=100) , 对于各种三格点相互作用强度

(α=0→0.2→0.6) , 不可逆熵产生 ∆Sirr 在临界磁

场强度附近都存在一个尖峰现象, 这个尖峰的出现能够利用一个给定时刻的密度算符与一个假设的吉布斯热平衡态之间的量子相对熵来解释. 从方程(6)可知, 不可逆熵产生 ∆Sirr 等价于一个给定时刻的密度算符与一个假设的吉布斯热平衡态之间的量子相对熵. 特别地, 对于系统的哈密顿量经过一个淬火过程使得哈密顿量中的参数发生一个突变时, 不可逆熵产生 ∆Sirr 进一步简化成淬火之前和淬火之后对应的吉布斯热平衡态之间的距离,如方程(7), 即 ∆Sirr=S[ρG(λ0)∥ρG(λτ)] . 那么,当外界横向磁场强度在其临界磁场强度附近发生一个很小的改变时, 相应的热平衡态之间将会发生一个显著的改变, 这样导致不可逆熵产生 ∆Sirr 在外界磁场强度接近临界磁场强度时表现为急剧增加或减少而形成尖峰特征. 进一步还发现, 随着XZX+YZY三格点相互作用 α 的增加(如图4中的实线 → 短划线 → 点线), 不可逆熵产生 ∆Sirr 出现尖峰位置不断地降低. 这个结果能被解释如下: 没有XZX+YZY 三格点相互作用时的临界磁场强度是在 λ=λc=1 , 而有 XZX+YZY 三格点相互作用时临界磁场强度是在 λ=λc=1+α . 假设外磁场强度偏离临界磁场强度一个小量 ε , 那么, 没有XZX+YZY 三格点相互作用时其淬火前的外磁场强度为 λ0=1−ε , 淬火后的外磁场强度为

λτ=0.01+λ0=0.01+ 1−ε ; 而有 XZX+YZY三

从一开始呈现下降到突然单调衰减. 这说明XZX +YZY三格点相互作用可以提高功涨落 Σ2 对初始外磁场强度的敏感度, 从而达到抑制功涨落的目的. 3) 有没有考虑XZX+YZY 三格点相互作用其功涨落 Σ 出现明显衰减的临界磁场位置是不同的,如没有考虑XZX+YZY三格点相互作用 α=0 ,临界磁场强度在 λ=λc=1  (如实线所示); 而当考虑 XZX+YZY 三格点相互作用时功分布涨落 Σ2的临界磁场强度是 λ=λc=1+α  (如短划线和点线所示). 我们注意到, 这些临界磁场强度是同用著名Loschmidt echo (LE)的动力学敏感性来判定伊辛自旋链模[35]、标准的各向 XY 自旋链模型[36]、含有 XZX+YZY三格点相互作用的 XY自旋链模型[24,27]中量子相变发生的临界磁场位置是相同的,其原因是文中方程(3)所示的特征函数同LE有类似的形式[37]. 其实, 在图2即平均功 ⟨W⟩ 随初始外磁场强度 λ0c 变化曲线中也有相同临界磁场位置,只是没有这么明显. 4) 随着各向异性参数 γ 的增加, 功涨落 Σ2 随初始外磁场强度 λ0 变化的趋势都将变得更为平缓.

2

格点相互作用时其淬火前的外磁场强度为

λ0=α+1−ε , 淬火后的外界磁场强度为λτ=α+0.01+1−ε . 通过简单的数值计算发现,

不可逆熵产生 ∆Sirr 如方程(27)随着XZX +YZY三格点相互作用强度 α 的增加而不断地减少.这样导致了不可逆熵产生 ∆Sirr 的尖峰位置随三格点相互作用 α 的增加不断地降低的特征. 最后, 比较图4(a)和图4(b), 明显可看出, 随着各向异性参数 γ 的增加, 不可逆熵产生 ∆Sirr 随初始外磁场强度 λ0 呈现更平缓的变化趋势.

4.2 XZX+YZY三格点相互作用对不可逆

熵产生 ∆Sirr 的影响

最后来研究XZX+YZY三格点相互作用对量子热力学中一个很重要的物理量即不可逆熵产生

∆Sirr 的影响. 根据方程(27), 给出了不可逆熵产生

240506-7

物 理 学 报   Acta  Phys.  Sin.   Vol. 68, No. 24 (2019)    240506

120

(a)10080DSirr60402000

0.5

1.00

1.5

2.0

DSirr=0=0.2=0.6

60

(b)504030201000

0.5

1.00

1.5

2.0

=0=0.2=0.6

图 4    不可逆熵产生 ∆Sirr 对于不同的三格点相互作用强度 α 和各向异性参数 γ 随初始外磁场强度 λ0 的变化 (a) γ=0.1 ;(b) γ=0.8 ; 其他的参数被设定为 β=100 ,  δλ=λτ−λ0=0.01 ,  N=5000

Fig. 4. Irreversible entropy production  ∆Sirr  as a function of  λ0  under various  α  for  γ=0.1  (a) and  γ=0.8  (b). Other para-meters are  β=100 ,  δλ=λτ−λ0=0.01  and  N=5000 .

51Kinoshita T, Wenger T, Weiss D S 2006 Nature 440 900Bloch I, Dalibard J, Wenger W 2008 Rev. Mod. Phys. 80 885Jarzynski C 1997 Phys. Rev. Lett. 78 2690Crooks G E 1999 Phys. Rev. E 60 2721Talkner P, Hanggi P 2007 J. Phys. A 40 F569Talkner P, Lutz E, Hanggi P 2007 Phys. Rev. E 75 050102(R)Esposito M, Harbola U, Mukamel S 2009 Rev. Mod. Phys. 811665Sagawa T, Ueda M 2010 Phys. Rev. Lett. 104 090602Campisi M, Hanggi P, Talkner P 2011 Rev. Mod. Phys. 83771Seifert U 2012 Rep. Prog. Phys. 75 126001Huber G, Kaler F S, Deffner S, Lutz E 2008 Phys. Rev. Lett.101 070403Dorner R, Clark S R, Heaney L, Fazio R, Goold J, Vedral V2013 Phys. Rev. Lett. 110 230601Mazzola L, De Chiara G, Paternostro M 2013 Phys. Rev.Lett. 110 230602An S, Zhang J N, Um M, Lv D, Lu Y, Zhang J, Yin Z Q,Quan H T 2015 Nat. Phys. 11 193Xiong T P, Yan L L, Zhou F, Rehan K, Liang D F, Chen L,Yang W L, Ma Z H, Feng M, Vedral V 2018 Phys. Rev. Lett.120 010601Silva A 2008 Phys. Rev. Lett. 101 120603Dorner R, Goold J, Cormick C, Paternostro M, Vedral V2012 Phys. Rev. Lett. 109 160601Bayocboc F A, Paraan F N C 2015 Phys. Rev. E 92 032142Zhong M, Tong P Q 2015 Phys. Rev. E 91 032137Wang Q, Cao D, Quan H T 2018 Phys. Rev. A 98 022107Xu B M, Zou J, Guo L S, Kong X M 2018 Phys. Rev. A 97052122Roger M, Hetherington J H, Delrieu J M 1983 Rev. Mod.Phys. 55 1Titvinidze I, Japaridze G I 2003 Eur. Phys. J. B 32 383Cheng W W, J M Liu 2010 Phys. Rev. A 81 044304Cheng W W, J M Liu 2010 Phys. Rev. A 82 012308Lian H L 2011 Physica B 406 4278Shan C J 2012 Acta Phys. Sin. 61 220302 (in Chinese) [单传家 2012 物理学报 61 220302]Xi Y X, Shan C J, Huang Y X 2014 Acta Phys. Sin. 63110305 (in Chinese) [郗玉兴, 单传家, 黄燕霞 2014 物理学报63 110305]Deffner S, Lutz E 2010 Phys. Rev. Lett. 105 170402Donald M J 1987 J. Stat. Phys. 49 815   结 论

考虑了XZX+YZY三格点相互作用对XY自旋链中当横向磁场发生一个突然改变时的平均功、功涨落、不可逆熵产生等量子热力学量的影响. 通过解析求解和数值模拟, 发现了一些很有兴趣的结果. 1) XZX+YZY三格点相互作用可能对平均功的增加起正面作用和负面作用, 与初始外磁场强度

λ0 的取值密切相关. 2) 通过调节 XZX+YZY三格

[2][3][4][5][6][7][8][9][10][11][12][13][14][15][16]

点相互作用强度可以很有效地抑制功涨落. 这一结论同文献[21]对于DM相互作用对XY型自旋链模型中功分布的影响是相同的, 即通过调节DM相互作用强度可以很有效地抑制功涨落. 3) 不可逆熵产生在临界磁场附近会出现特殊的尖峰特征,并且尖峰值随XZX+YZY三格点相互作用的增加有不断减少的趋势. 进一步, 利用对于一个突然淬火的物理过程, 不可逆熵产生 ∆Sirr 能表示成淬火之前和淬火之后对应的吉布斯态之间的距离(方程(7)), 且对不可逆熵产生在临界磁场附近会出现尖峰特征可以进行合理的物理解释. 这里需要指出的是, 文中获得的相关结果是在低温条件即

β=100 的条件下获得的. 至于在高温条件, 即 β 较

[17][18][19][20][21][22][23][24][25][26][27][28][29]

小下XZX+YZY三格点相互作用对平均功、功涨落以及不可逆熵产生的影响与文中在低温条件给出的结果是否有很大的差别, 这值得今后进一步研究. 总之, 本文获得的结果, 将在淬火非平衡量子热力学领域的相关研究中有一定的理论指导意义.

参考文献

[1]Greiner M, Mandel O, Hansch T W, Bloch I 2002 Nature 419[30][31]

240506-8

物 理 学 报   Acta  Phys.  Sin.   Vol. 68, No. 24 (2019)    240506

[32]Sachdev S 1999 Quantum Phase Transitions (Cambridge:Cambridge University) pp 61−64[33]Zhang J, Shao B, Zou J, Li Q S 2011 Chin. Phys. B 20100307[34]Zhang A P, Li F L 2013 Chin. Phys. B 22 030308[35]Quan H T, Song Z, Liu Y X, Zanardi P, Sun C P 2006 Phys.Rev. Lett. 96 140604[36]Yuan Z G, Zhang P, Li S S 2007 Phys. Rev. A 75 012102[37]Prosen T, Seligman T H, Znidaric M 2003 Prog. Theor. Phys.Suppl. 150 200Effects of multisite interaction on nonequilibriumthermodynamics of XY spin chain in a transverse filed*

He Zhi 1)2)†    Yu Min 2)    Wang Qiong 2)

1) (Hunan Province Cooperative Innovation Center for the Construction and Development of

Dongting Lake Ecological Economic Zone, Changde 415000, China)

2) (College of Mathematics and Physics Science, Hunan University of Arts and Science, Changde 415000, China)

( Received 10 April 2019; revised manuscript received 1 September 2019 )

Abstract

In recent years, the property of nonequilibrium thermodynamics in closed system, especially in spin chainsystem undergoing a quenching process, has become one of the hot topics in the quantum thermodynamics. Thenonequilibrium thermodynamic properties of XY spin chain with XZX + YZY type of three-site interactionunder a transverse field are studied by considering an exactly solvable model. First we review some basicconcepts, i.e., the work distribution, the averaged work, the fluctuation of work, and the irreversible entropy inthe nonequilibrium thermodynamics, and give the theoretical model and its solutions. Then, we concretelydiscuss the effects of the three-site interaction of XZX + YZY type on the average work, the fluctuation of workand the irreversible entropy in the extended XY chain undergoing a quench process. The theoretical calculationand numerical simulation show that the three-site interaction of XZX + YZY type may play a positive andnegative role in the increase of the averaged work, which depends on the strength of initial external magneticfield. Moreover, we also find that work fluctuation can be effectively suppressed by adjusting the intensity ofXZX + YZY three-site interaction. Finally, it is found that the irreversible entropy production presents a sharppeak characteristic near the critical magnetic field, and the value of the peak sharp decreases with the increaseof XZX + YZY three-site interaction. Simultaneously, the corresponding physical explanations are also given. Ina word, the results given in present paper may increasingly arouse one’s interest in the nonequilibrium quantumthermodynamics.

Keywords: XY spin chain with multisite interaction, averaged work, fluctuation of work, irreversible entropy

production

PACS: 05.70.Ln, 05.30.Rt, 05.40.–a, 75.10.Pq                          DOI: 10.7498/aps.68.20190525

 *  Project supported by the China Postdoctoral Science Foundation (Grant No. 2017M622582), the Excellent Young ScientistsFund of Education Bureau of Hunan Province, China (Grant No. 16B177), the Applied Characteristic Disciplines in HunanProvince-Electronic Science and Technology, and the Key Laboratory of Photoelectric Information Integration and OpticalManufacturing Technology of Hunan Province, China.

†  Corresponding author. E-mail:  hz9209@126.com

240506-9

因篇幅问题不能全部显示,请点此查看更多更全内容