ControlinWirelessSensorNetworks
MartinKubisch,HolgerKarl,AdamWolisz
TelecommunicationNetworksGroupTechnischeUniversit¨atBerlinSekr.FT5-2,Einsteinufer2510587Berlin,Germany
kubisch|karl|wolisz@ee.tu-berlin.de
LizhiCharlieZhong,JanRabaey
BerkeleyWirelessResearchCenterUniversityofCaliforniaBerkeley2108AllstonWay,Suite200Berkeley,CA94704-1302
czhong|jan@eecs.berkeley.edu
Abstract—Twoalgorithmsfordynamicallyadjustingtrans-missionpowerlevelonaper-nodebasishavebeenevaluatedusingasimulativeapproach.Networklifetime,convergencespeedaswellasresultingnetworkconnectivityhavebeenobtainedforthesetwoalgorithmsusingaparticularindoorsensorenvironment.Thenetworklifetimemetricsofthesetwolocalalgorithmsarealsobenchmarkedagainstpowercontrolalgorithmsusingglobalinformation.Weshowthatthesetwoalgorithmsoutperformfixedpowerlevelassignmentandaregenerallywithinalifetimeoftwoofagloballycomputedsolution.
Keywords:Relaying,energyefficiency,sensornetworksI.INTRODUCTION
Sensornetworks[1]—networksoftinynodesequippedwithlimitedsensing,computing,andradiocommunicationcapabilities—areatechnologicalvisionthatiscurrentlyreceivingalotofattentionfromseveralresearchcommu-nities.Inatypicalscenario,suchsensornetworkswouldusewirelesscommunicationtotransmittheirobservationvaluestoagivenmonitorstationwhichwouldserveasauserinterface.
Ajointcharacteristicofmostapplicationscenariosisthatsensorsonlyhavealimitedenergysupplywhichmightnotevenberechargeable,hencetheyhavetoworkasenergy-efficientlyaspossible.Oneoptionistoreducetransmissionpowerusingintermediatenodesasrelaysinsteadofdirectcommunicationwitharemotenode.Whilesuchrelayinghasitsowndisadvantages(energyisnowalsoconsumedforintermediatereceptionandtransmission),relayingcanbebeneficialforimprovingenergyefficiency[2].
Yetarbitrarilyreducingtransmissionpowerisnotpossi-ble;atleast,somedirectneighborsofasensornodemustbereachabletoprovidethepossibilitiestoperformrelayingandtoformaconnectednetworkviarelaying.Thereforeitisimportanttofindalgorithmswhichdetermineappropriatetransmissionpowerlevelsforeverynode.Inaddition,becauseofthesizeanddynamicsofsensornetworks,thesealgorithmsshouldbedistributedones,relyingonlyonlocallyavailableinformationandtherewithbeingscalableasthenetworkgrowths.
Wepresenttwodistributed(local)algorithmsthatdeter-mineanindividualtransmissionpowerlevelforeachnodeofafixed,non-mobilewirelesssensornetwork.Thesame
powerisusedwhensendingtoanyneighbor,irrespectiveofwhethersomeneighborsarecloserthanothers.Onereasontodosoisthetimeandhenceenergyexpenditurethatisrequiretosettheamplifiertodifferentpowerlevels.Algorithmically,theuseofdifferentpowerlevelsdependingontheintendedreceiversiseasilypossible.Thedistributedcomputationhappensinaninitializationphase,andtheresultingpowerlevelsarethenusedforthedatacommunicationwithinthenetwork.Asthisdistributedcalculationdoesnotwarrantyafullconnectednetwork,itmaybereasonabletoleavefew(communicationexpensive)nodesoutinordertospendthisenergyforanetworklifetimeextension.
Asthelocalalgorithmswouldnotbedeployedasstand-alone,insteadtheywouldbeintegratedwithothermechanismusingthesameinformation,e.g.,locatingofsensors,neitheraparticularMACprotocolnoradedicatedprotocolforroutediscoveryisused.Buttoevaluatethealgorithmsintermsofnetworklifetime,datatransfermustberealized,henceanyMACprotocolintendedtoworkwithmustprovidecorrectdatadelivery.Theroutingtablesarecomputedusingtheper-nodepowerlevelachievedandtheshortest-pathroutingbasedonDijkstra’salgorithm[3].Oneparticularlyinterestingaspectisthefactthatpowerassign-mentalgorithmscanresultinasymmetriccommunicationrelationships.Hence,theroutingprotocolappliedinrealsystemsmustbeabletohandlesuchasituation.
Asthelocalalgorithmscanresultinnetworksnotbeingfullyconnected,itishardtocomparelocalandglobalalgorithmsintermsofnetworklifetime1(timeuntilthefirstsensornodedies;allnodesstartwiththesamefixedamountofenergy).Thesolutionistoconsiderthenodesnotbeingconnectedasdeadnodes,hence,aglobalalgorithmrunsuntilonenodemorethanthenumberofnotconnectednodes(fromthelocalcase)died.Forthelocalalgorithmsthelifetimeisoverwhenthefirstnodeofthelargestconnectedpartofthenetworkrunsoutofenergy.ButascanbeseeninSectionIII-B,theaveragenumberofnodesnotbeingconnectedisfarbelowonepercent,whichinthe
1Alternatively,
timetonetworkpartitioncouldbeused,butasthelocal
algorithmscanendupwithsomenodesnotbeingconnecteditisnotcomparable
scenariosusedmeansbelowonenode.Hence,weneglectedthiseffectandconsideralwaysthedeadofthefirstnodeasourfigureofmeritandoptimizationcriterion.
Theremainderofthispaperisorganizedasfollows.SectionIIdescribesbothlocalalgorithmsconsideredaswellastheglobalalgorithmswhichserveascomparisoncases.SectionIIIoutlinesthesimulationsetupweusedtostudythesealgorithmsandpresentssimulationresults.SectionIVgivesanoverviewofrelatedwork.Finally,SectionVpresentsconclusionsanddirectionsforfuturework.
II.PROBLEMSOLUTIONS
Inthefollowing,fivedifferentapproachesareintroduced.Thefirsttwoarethelocalalgorithmswhichcanbeappliedtosensornetworksinadistributedmanner,whereastheotherthree(global)algorithmsarecomparisoncaseswhichmakeuseofglobalknowledgeandhencealwaysachieveoptimalsolutions,accordingtotheirrespectiverestrictions.Theglobalalgorithmsareusedtoshowtheeffectivenessofthelocalalgorithms.
A.Thresholdinnumberofneighbors
The“localmeanalgorithm”(LMA)worksinthefollow-ingway:Allnodesstartwiththesameinitialtransmissionpower(TransPwr).Everynodeperiodicallybroadcastsalifemessage(LifeMsg)includingitsuniqueidentity.Alltheothernodes,whichreceivesuchaLifeMsg,replywithalifeacknowledgemessage(LifeAckMsg)includingtheaddressoftheLifeMsgsender.BeforeanodeissuesthenextLifeMsgitcountsthenumberofLifeAckMsgsreceived(NodeResp).IfNodeRespislessthanamini-mumthreshold(NodeMinThresh),thenodeincreasesitstransmissionpowerbyacertainamount(Ainc)foreverymissingneighbor;thetransmissionpowerisnotincreasedbymorethanBmaxinasinglestep.2IfNodeRespislargerthanamaximumthreshold(NodeMaxThresh),itdecreasesitstransmissionpowerbyacertainamount(Adec)foreverysupernumeraryneighbor;thetransmissionpowerisnotdecreasedbylessthenBmininasinglestep.3IfNodeRespisbetweenNodeMinThreshandNodeMaxThreshthenodedoesnotchangeitstransmissionpoweranymore;ithasconverged.Whilethisalgorithmhasaperiodicnature,itisimportanttonotethatnoclosesynchronizationofnodesorglobaltimebaseisrequired;thenotionofperiodicityisapurelylocalone.
B.Thresholdinmeannumberofneighbors
The“localmeanofneighborsalgorithm”(LMN)workssimilartoLMAexceptthatitaddssomeinformationtotheLifeAckMsganditdefinesNodeRespinadifferentway.InadditiontotheaddressfromthereceivedLifeMsg,theLifeAckMsgalsocontainsitsown,mostrecently
2Formally:
TransPwr←min{Bmax·TransPwr,A−NodeResp)·TransPwr}.inc·
(NodeMinThresh3Formally:TransPwr←max{B
min·TransPwr,A−NodeMaxThresh)·TransPwr}.
dec·(1−
(NodeRespcomputed,numberofneighbors.ThenodereceivingtheLifeAckMsgscalculatesameanvaluefromitsneighbors’numberofneighbors—thenewNodeResp,whichinturnisusedtoadjustthetransmissionpower.E.g.,whennodeAsendsaLifeMsg,thenodesB,CandDreceivethismessageandrespondwithaLifeAckMsgcontainingtheirmostrecentNodeResp(B=6;C=4;D=3).AsnodeAreceivesalltheseLifeAckMsgitcreatesthemeanoutofthenumberofresponses(threeneighborsB,C,D)andtheirmeannumberofneighbors(6;4;3),whichisthenewNodeRespforA(here4).IfthisnewNodeRespisbelowNodeMinThreshoraboveNodeMaxThreshthetransmissionpoweradaptionisdoneasdescribedinSectionII-A.
C.Fixedtransmissionpower
Themostsimplestalgorithmistoassignanarbitrarilychosentransmissionpowerleveltoallsensornodes,muchlikeitwouldbedoneatproductiontimeforsensorsthatdonothavepowercontrolatall.Inthefollowingweassumethatthetargetconfiguration(i.e.,thedensityofnodes)isknownandhencetheminimumtransmissionpowerprovidingafullyconnectednetworkisknownaswell.Thisvalueisusedasfixedtransmissionpower.Additionallylargertransmissionvaluesareusedtoshowtheeffectofusingtomuchapower.
D.GlobalsolutionwithequaltransmissionpowerTheEqualTransmissionPower(ETP)algorithmalsoassignsauniformpowertoallnodes,butchoosestheminimalvaluethatensuresafullyconnectednetworkforthisparticularscenario.Tofindtheminimumtransmissionpower,thefollowingalgorithmisused:
1)Amongthenodepairsthatarenotyetconnected,choosetheonewiththesmallestdistance.
2)Settransmissionpowerofallnodestoavaluesuffi-cienttoconnectthesetwonodes.
3)Checkconnectivityoftheresultingnetworkandwhenthenetworkisconnected,theminimumpowerlevelisfound;otherwisestartfrom1.
Thispowervaluerepresentsthesmallestvalueforafullyconnectedsensornetworkwithfixedtransmissionrangeanditalsoresultsinsymmetriccommunicationlinks.Thisalgorithmusesglobalinformationanditisnotevidenthowtoimplementacorrespondinglocalalgorithmthatachievesthesameresults.
E.GlobalsolutionwithdiversetransmissionpowerTheglobalsolutionwithDiverseTransmissionPower(DTP)algorithmcreatesaconnectednetworkbutdoesnotsetalltransmissionrangestothesamevalue.Insteadittriestofindaminimumpowerlevelforeverynodeindividually.Thealgorithmworksinthefollowingway:
1)Amongthenodepairsthatarenotyetconnected,choosetheonewiththesmallestdistance.
2)Settransmissionpowerofthesetwonodestoavaluesufficienttoconnectthem.
3)Checkconnectivityoftheresultingnetworkandwhenthenetworkisnotconnectedstartfrom1.
Thisalgorithmminimizestheoveralltransmissionpowerconsumptionfortheentirenetwork,butitmayresultinasymmetriccommunicationlinks,e.g.,onenodecanreceivedatafromafarneighborwhichusesahighertransmissionpower,butcannotanswerdirectlyduetoitssmallertransmissionpower.
Eventhoughitispossibletoconstructnetworkswherethisalgorithmdoesnotfindminimumpowerlevelsforallnodes,DTPvastlyoutperformsanyotherglobalalgorithmthatwehaveconsidered.Therefore,weuseDTPasacomparisoncase.SimilarlytotheETPalgorithm,thisalgorithmalsousesglobalknowledge,andequivalentlocalimplementationsarenotobvious.
III.SIMULATIONRESULTS
A.Investigationscenario
Inordertoevaluateandcomparethesealgorithms,wesimulatedtheenergyconsumptionandresultingnetworklifetimeforaparticularindoorsensornetworkscenario.ThesimulatorusedforthistaskwaswrittenusingtheOMNeT++[4]simulationtool.
Duringthedatacommunicationphase,energyiscon-sumedforbothtransmittingandreceivingdatapacketsaswellasforidlephases.Thepowerconsumptionduringtheidlephaseis0.1µW,forreceiving0.5mW,forsending1mW;4asensornode’sinitialenergysupplyis100J.Atanassumedbitrateof10kbit/s,thesevaluescorrespondto1µJand0.5µJtosendandreceiveabit,respectively.Thetransmissionpowerlevelsaresetbytheabovealgorithmssuchthattransmissionerrorsonlyhappenwithnegligibleprobability(moreprecisely,anodeisonlyconsideredtoreceivefromaneighboriftheSNRatitsantennaisatleast-90dBm),hencetransmissionerrorsarenotconsidered.ThephysicallayoutconsistsoffourroomsconnectedbyahallwayasshowninFigure1.Allroomsare3.5mhigh,thegreybarsindicatedoors(1mwide;assumedtoreachuptotheceiling),theblackdotsshowthepositionoftwomonitornodes(actingastheuserinterfaceandbeingthemasterstationwhichpollthesensorsoverthenetwork),whicharepositioned1.2mabovetheground.Wallsareassumedtobeinfinitesimallythin,constitutingnoobstacleforradiocommunication.Thepathlosscoefficientofthechannelissetto2.Basedonthislayout,32differentplacementsofsensornodesweregeneratedbyplacing318nodesrandomlyonthewalls,ceilings,andfloors(usingauniformnodedistribution).
Foreachoftheseplacements,everyalgorithmcomputesthetransmissionpowerlevelassignmentsforeachsensornode.Accordingtothisassignments,edgesbetweenthenodesabletooverheareachotherarecalculatedandwithDijkstra’salgorithm[3]theroutingtableentriesforeverynodearecalculated.FortheETPandDTPalgorithmsas
4the
assumptionisthatasendingnodecanwakeupnodesinitsvicinitybyusingalow-bandwidthsignalingchannelthatiseasytodemodulateevenforalow-powerreceiver,e.g.the”Frisbee”modelin[5]
4m4m4m6mm5RoomRoomRoomRoomm2Hallway18mFig.1.Physicalroomlayout.Greybarsrepresentdoors,blackcirclesrepresentmonitornodes.
wellasforthefixedtransmissionpower,thisresultsinasingleconfigurationofpowerlevelassignments.Thefinaltransmissionpowerlevelforthelocalalgorithmsdependsontheinitialtransmissionpowertobeusedbyeachnodeandthenumberofcyclesanalgorithmruns.Theinitialpowervalueisvariedlinearlyin56stepsfromatransmissionrangeof25mmto1.4m.Foreachoftheseinitialpowerlevels,theinitializationphaseiscomputedusing100cycleswitheitherLMAorLMN.Eventhoughbothalgorithmsettledownearlier,thisnumberwasusedtoavoidinstableroutes.
Thelocalalgorithmsuseatransmissionpowerincreasevalue(Ainc)of10%withanupperbound(Bmax)oftwotimestheoldtransmissionpowerandadecayvalue(Adec)of2%withalowerbound(Bmin)ofhalftheoldvalue(moreaggressivevalueslettheimplementationoscillate).Notethattheenergyconsumptionduringthisinitializa-tionphaseisnottakenintoaccount.Informationneededforthealgorithmsarealsoavailableinother,sensor-network-relatedprotocols[6],thusitcangetthisinformationwith-outadditionaloverheadandtheconsumptionisnegligible.Aftertheinitialization,thedatacommunicationphaseissimulated.Thetrafficinthenetworkconsistsofre-quest/repliesinitiatedbythemonitor.Theserequestsaredirectedatarandomlychosensensornode(themonitorisassumedtohavesufficientinformationaboutthesen-sors).Thenodesreceivetherequestandanswerwithan(arbitrary)replyvalue.Theserequestsaresenteveryhalfasecond,alternatingbetweenthetwomonitornodes.Thesesimulationrunsresultinatotalof32networklifetimesamplesfortheglobalalgorithmsand32×56sam-plesforthelocalalgorithms;networklifetimes,confidencelevelsfortheaveragelifetimeandcomparisonsareshowninSectionIII-C.Butfirst,thequestionofconvergencespeedofthelocalalgorithmsaswellaswhetherthesealgorithmsreachafullyconnectednetworkisinteresting.B.Convergenceandconnectivity
ThelocalalgorithmsLMAandLMNuseanumberofiterationsbeforesettlingdowntoparticulartransmissionpowerlevels.Anindividualnodehasconvergedwhen
itsnumberofneighborsisbetweenNodeMinThreshandNodeMaxThresh.AsdeterminedbyKLEINROCKandSILVESTERin[7]themeannumberofneighborsassuringagoodconnectivityshouldbe5.89andpreliminaryexperi-mentswiththeglobalalgorithm,asdescribedinSectionII-E,showedthatthenumberofneighborsofmostnodesisbetweenfourandseven;thesevalueswerethereforeusedasthresholdsforthelocalalgorithms.
Adesirablepropertyofsuchanalgorithmwouldbethatallnodesconvergeveryquickly.Evidently,theini-tialtransmissionpower(equivalenttotheinitialrangeoftransmission)playsanimportantroleforthesealgorithms.Figure2showsthatmostnodesconvergewithinasmallnumberofcyclesandsomefewnodestakeupto50cycles.Forcertaininitialpowerlevels,italsohappensthatavery
250LMA1,81,61,41,210,80,60,40,20147101316LMN0,050,0450,040,0350,030,0250,020,0150,010,005019222528LMAConfiguration numberFig.3.Percentageofnodesnotconnectedfordifferentnetworkconfigurations
20015010050073852.5Cyclenumber
aroughideaofpossiblenetworklifetimesachievableinourconfiguration,Figure4showstheresultsforthesimplefixedassignmentsoftransmissionpowers(powervaluescorrespondingtotransmissionrangesof3,5,and7mwereused;therewiththeusednetworkswerefullyconnected)aswellasthecasefortheglobalETPalgorithm.Asexpected,ETPoutperformsthefixedvaluealgorithmsandachievesanaveragenetworklifetimeofabout48800seconds,whilethefixednetworkalgorithms’achievements
122.5areconsiderablybelowthat.Itisalsointerestingtosee
62.5Initialthatthelifetimeofthenetworkdependsheavilyontherangeactualnetworkconfiguration;differencesareupto50%.(cm)Moreinterestingisthecomparisonbetweentheglobaland
Fixed @ 3m70Numberofconvergednodes11325374961Fig.2.Histogramoftimetoconvergence(incycles)dependingonintitialtransmissionrange(incm)
97Fixed @ 5mFixed @ 7m31ETPNetwork lifetime ( x 1000s)smallnumberofnodesdonotconvergeatall.Asanexample,consideracasewhereasinglenodeislocatedfarawayfromaclusterofnodesthatquicklyformaconnectedgroupbeforetheyreceivethefarnodesLifeMsg.
WhilealargervalueofNodeMaxThreshincreasesthelikelihoodofaconnectednetwork,italsoresultsinlargertransmissionpowerlevels.
Figure3showsthepercentageofnodesthatwerenotreachablefromthemonitorstationsforthelocalalgorithmsfromSectionsII-AandII-B.Thelargestvalueis1.65%forLMAand0.04%forLMN,andontheaverage,0.003%arenotconnectedconsideringLMNand0.37%whenonlytakingintoaccountLMA.5TheseresultssuggestthatLMNcreatesamuchstrongerconnectednetworkthanLMA.C.Networklifetime
Themostinterestingperformancemetricforsuchasensornetworkisthenetworklifetime:thelongereverysinglenodeiscapabletocommunicate,thebetterthetransmissionpowerlevelswerechosen.Inordertogive
thatthesenumbersareaveragedoverdifferentinitialtransmission
powerlevels,hencepercentagesdonotcorrespondtoanintegernumberofnodes.
5Note
6050403020100135791113151719212325272931Configuration numberFig.4.Networklifetimesfordifferentconfigurationsforfixedtransmis-sionpowerandequaltransmissionpowerassignments
thelocalalgorithmsinFigure5.ItcomesasnosurprisethatDTPvastlyoutperformsallotheralgorithmswithitsglobalknowledge.Asageneralimpression,thelifetimeachievedbyDTPisupto209%longerthanthatobtainedbyLMNandevenhigherforLMA.Onaverage,DTPachievesnetworklifetimesthatareabouttwiceaslongasLMA,LMN,andETP.Figure5alsosuggeststhatthelocalalgorithmsandtheETPalgorithmperformquitesimilarly.Figure6showstheconfidenceintervalsforthemeannetworklifetimeata95%confidencelevel.Applyingasimplegraphicalinterpretation,wecaninferthatETP
LMNDTP140ETPLMNLMAV.CONCLUSIONS
Wecanstatethatusingheuristics,whichconsiderthenumberofneighborsanodehas,resultinasufficientlyconnectednetwork,provideimprovementsinnetworklife-timeoversimplefixedassignmentsandareintherangeofsymmetricalgorithmsusingperfectknowledge.Whilethepresentedlocalalgorithmsarenotabletooutperformsophisticatedones,theyperformusuallywithinafactoroftwoconsideringthelifetime.
Additionally,thesealgorithmsarestructuredsimilarlytoothermechanismsthatareconjecturedtobedeployedinsensornetworks,e.g.,locationingmechanisms.Itwouldhencebepossibletointegratethesealgorithmsandtoamortizetheirjointresourceconsumption.
Anumberofinterestingquestionsremainforfuturework,e.g.,tousethenumberofneighborsintheannounce-mentmessagesandtoweightthisinformationagainstthetransmissionpowerwithwhichitwassentorhowanon-reliableMACinfluencesthealgorithms.Weintendtoinvestigatetheseareasinthenearfuture.
REFERENCES
[1]D.Estrin,R.Govindan,J.S.Heidemann,andS.Kumar,“Next
centurychallenges:Scalablecoordinationinsensornetworks,”inProc.5thAnn.Intl.Conf.onMobileComputingandNetworking.Seattle,WA:ACM,Aug.1999,pp.263–270.
[2]J.P.Monks,J.-P.Ebert,A.Wolisz,andW.meiW.Hwu,“Astudy
oftheenergysavingandcapacityimprovementpotentialofpowercontrolinmulti-hopwirelessnetworks,”inWorkshoponWirelessLocalNetworks,Tampa,Florida,USA,alsoConf.ofLocalComputerNetworks(LCN),Nov.2001.
[3]E.Dijkstra,“Anoteontwoproblemsinconnectionwithgraphs,”
NumericalMathematics,vol.1,pp.269–271,1959.
[4]A.Varga,OMNeT++:DiscreteEventSimulationSystem,Technical
UniversityofBudapest,FacultyofElectricalEngineeringandInfor-matics,Mar.2001,http://www.hit.bme.hu/phd/vargaa/omnetpp.htm.[5]A.Cerpa,J.Elson,D.Estrin,L.Girod,M.Hamilton,andJ.Zhao,
“Habitatmonitoring:Applicationdriverforwirelesscommunicationstechnology,”inProc.ACMSIGCOMMWorkshoponDataCommu-nications,LatinAmericaandtheCaribbean,Apr.2001.
[6]J.Li,J.Jannotti,D.DeCouto,D.Karger,andR.Morris,“A
scalablelocationserviceforgeographicad-hocrouting,”inProc.ofthe6thACMInternationalConferenceonMobileComputingandNetworking(MobiCom20000),Aug.2000,pp.120–130.
[7]L.KleinrockandJ.A.Silvester,“Optimumtransmissionradiiin
packetradionetworksorwhysixisamagicnumber,”inNationalTelecommunicationsConference.Birmingham,Alabama:IEEE,Dec.1978,pp.4.3.1–4.3.5.
[8]R.Wattenhofer,L.Li,P.Bahl,andY.-M.Wang,“Distributed
topologycontrolforpowerefficientoperationinmultihopwirelessadhocnetworks,”invol.3.Anchorage:IEEE,Apr.2001.
[9]V.RodopluandT.H.-Y.Meng,“Minimumenergymobilewireless
networks,”IEEEJournalonSelectedAreasinCommunications,vol.17,no.8,pp.1333–1344,Aug.1999.
[10]C.Savarese,J.M.Rabaey,andJ.Beutel,“Locationingindistributed
ad-hocwirelesssensornetworks,”inProc.InternationalConferenceonAcoustics,Speech,andSignalProcessing,2001.
[11]T.A.ElBatt,S.V.Krishnamurthy,D.Connors,andS.Dao,“Power
managementforthroughputenhancementinwirelessad-hocnet-works,”inICC2000.NewOrleans,LA:IEEE,June2000.
[12]B.Krishnamachari,R.Bejar,andS.B.Wicker,“Distributedcon-straintsatisfactionandtheboundsonresourceallocationinwirelessnetworks,”inSixthInternationalSymposiumonCommunicationsTheoryandApplication.Ambleside,UK:ISCTA,July2001.
[13]R.RamanathanandR.Rosales-Hain,“Topologycontrolofmultihop
wirelessnetworksusingtransmitpoweradjustement,”inProc.IEEEInfocom,Tel-Aviv,Israel,Mar.2000.
Network lifetime ( x 1000s)120100806040200135791113151719212325272931Configuration numberFig.5.Networklifetimes(inthousandsofseconds)fordifferentconfigurationsforglobalandlocalalgorithms
525048464442403836ETPLMNLMAFig.6.ConfidenceintervalsofnetworklifetimesforlocalalgorithmsandETP;95%confidencelevel
outperformsbothlocalalgorithms.ThisstemsfromthefactthatETPusesglobalinformation,butitisimportanttonotethatLMNdoesnotonlycreateamuchstrongerconnectednetwork,italsoperformsinmeanby14%betterthanLMA.Moreover,thelocalalgorithmsarealmostcompetitivewiththeglobalones.
IV.RELATEDWORK
Inrecentpublicationstheproblemofpowercontrolwasaddressedwhileassuminginformationontheangleofreception[8]orthenodesknowledgeofitslocation[9][10].Inthesepublicationsmorecomplicatedalgorithmsthaninthispaperareused,butastheyuseadditionalinformationacomparisoncanonlybemadeusingthesamemetric.Astherearesimilarapproachestosolvetheproblemofpowercontrolasinthiswork[11][12],theydifferinthatELBATTetal.needsaseparateandcontention-freefeedbackchannelandusesacellularTDMAsystem.KRISHNAMACHARIetal.usesanalgorithmwithanexpo-nentialgrowincontrolmessagesinthenumberofnodes.In[13]RAMANATHANandROSALES-HAINprovidedtheideaforthefirstalgorithmusedinthispaper,buttheyusedthealgorithmtoexaminenetworkthroughputanddelayinatwodimensionalspacewithasmallersetofnodes.
Network lifetime ( x 1000s)
因篇幅问题不能全部显示,请点此查看更多更全内容