inthesolarsystem
ØyvindGrøn
OsloCollege,FacultyofEngineering,CortAdelersGate30,N-0254Oslo,NorwayInstituteofPhysics,UniversityofOslo,P.O.Box1048,N-0316Blindern,Oslo3,Norway
arXiv:astro-ph/9507051v1 13 Jul 1995HaraldH.Soleng
CERN,TheoryDivision,CH-1211Geneva23,Switzerland
(16November1994;revised8June1995)
Abstract
Onthescalesofgalaxiesandbeyondthereisevidenceforunseendarkmatter.Inthispaperwefindtheexperimentallimitstothedensityofdarkmatterboundinthesolarsystembystudyingitseffectuponplanetarymotion.SubjectHeadings:Gravitation—DarkMatter(solarsystemtests)PACSnumbers:04.20.-q95.35.+d
ToappearintheAstrophysicalJournal
TypesetusingREVTEX
1
1.INTRODUCTION
AccordingtoNewton’sinversesquareforcelaw,thecircularspeedaroundanisolatedobjectofmassMshouldbe
vc=
r
.
Indiskgalaxieswedo,however,observethatthecircularspeedsareapproximatelyindepen-dentofratlargedistances.Thestandardexplanationisthatthisisduetohalosofunseenmatterthatmakesuparound90%ofthetotalmassofthegalaxies(Tremaine1992).Thesamepatternrepeatsitselfonlargerandlargerscales,untilwereachthecosmicscaleswhereabaryonicdensitycompatiblewithsuccessfulbigbangnucleosynthesisislessthan10%ofthedensitypredictedbyinflation,i.e.thecriticaldensity.
Theflatrotationcurvesofgalaxies,takenatfacevalue,implythattheeffectivegravi-tationalforcefollowsa1/rlawatlargescales.ThiscouldeitherbeduetodarkmatterortoadeparturefromNewtoniandynamicsatsmallaccelerations(Milgrom1983;Bekenstein1992)orlargescales(Sanders1990).Aneffectivegravitationalaccelerationlawoftheform
√g=−
ratsmallaccelerationsa≪a0hasbeenreported(Kent1987;Milgrom1988;Begeman,Broeils,&Sanders1991)tobesuccessfulinreproducingtheobservationsofgalacticsys-tems.1Theconstanta0hasbeendeterminedbystudiesofgalaxyrotationcurvesanditsvaluehasbeenfoundtobea0≈10−8cms−2.AsnotedbyMilgrom(1983),thisvalueofa0≈cH0.
Withsucha1/rforcelawthecircularspeedwouldapproachvc=(GMa0)1/4.IftheluminosityLofagalaxyisproportionaltoitsmassM,thenthisrelationwouldexplaintheinfraredTully–Fisherlaw(Tully&Fisher1977)whichstatesthatcircularspeedsingalaxiesscaleasvc∝L1/4.
Thetheoreticalunderpinningforthe1/reffectiveforcelawisnotyetfirmlyestablished.ItmightbeduetoamodificationofgravityalongthelinesofMilgrom(1983),butitseemstobedifficulttoconstructaviablerelativistictheoryofthiskind(ZhytnikovandNester,1994).Accordingly,thestandardviewisthattheeffectivegalactic1/rforcelawiscausedbydarkmatter.Atthispoint,itisworthmentioningthatalarge-distanceforcelawofthistypecanbereproducedwithinstandardgeneralrelativitytheorywithaverysimple,butperhapsunrealistic,mattersource(Soleng1993,1995).Ourkeypointisthatgeneralrelativityisquitecapableofexplainingtheobservedgravitationalpropertiesoftheuniverseprovidedwegiveittherightinput.Mostlikelythedarkmatterisamixtureofseveralcomponents,suchasweaklyinteractingparticles,blackholes,browndwarfs,neutronstars,aswellasenergystoredinhigh-frequencyoscillationofNewton’sgravitationalcoupling(Accetta&Steinhardt1991;Steinhardt&Will1994).Whatevertheoriginofthe1/rforcelawmight
be,itsreportedexperimentalsuccessforcesustotakeitseriously.Accordingly,wethinkthatitisparticularlyimportanttocomparethedensitiesofdarkmatterinferredfromlargescaledynamicswithexperimentallimitsfromlocaltests.Ifdarkmatterexistsintheformofmicroscopicobjects,onewouldexpectthatthisunknownformofenergypenetratesintogalaxiesandalsoenterthesolarsystem.
Braginsky,Gurevich,andZybin(1992)havestudiedtheeffectofdarkmatterboundinthegalaxybutunboundtothesolarsystem.Suchunbounddarkmatterwouldproduceananisotropyinthegravitationalbackgroundofthesolarsystem.Theresultingtidalforcesinduceanadditionalperihelionprecession.Assumingρd=0.3GeV/cm3=5.4×10−25g/cm3theycomputedthemagnitudeoftheresultingsecularorbitdistortion.Theeffectmaybeobservedbyreasonableimprovementsofpresentobservationaltechniques(KlionerandSoffel1993;Braginsky1994).ApossibleinfluenceofdarkmatterontheEarth–MoonsystemhasbeenconsideredbyNordtvedt(1994)andbyNordtvedt,M¨uller,andSoffel(1995).
Inthispaperwefocusonadarkmattermodelinwhichthedensityofdarkmattervariessoslowlywithinthesolarsystemthatitcanconsideredconstant.ThisisareasonableassumptionifdarkmatterinthesolarsystemreallyisinthemuchdeeperpotentialofthegalaxywiththeSuncausingonlyalocaldensityperturbationinthegalacticdarkmatterbackground.Itwillalsobeassumedthattheequationofstateoftheunseenmatterisalmostdust-like,thatis,thepressurewillbeassumedtobemuchlessthantheenergy-density.Basedonthismodelwecalculateanupperlimittothedensityofdarkmatterbyconsideringitseffectupontheperihelionprecessionoftheplanets.Wehavealsocarriedoutsimilarcomputationswithadarkmatterdensityproportionalto1/r4and1/r2usingtheresultsinSoleng(1994)and(1995),respectively.Thecorrespondingexperimentalboundsdonotvarymorethanoneorderofmagnitude.ThisweakdependenceonthedistributionfunctioncorroboratestheclaimofAndersonetal.(1989)andshouldbeexpectedbecause(tolowestorder)theperihelionprecessioncausedbydarkmatterisgivenbytheintegrateddarkmattermassatagivenorbitalradius.
2.SOLARSYSTEMWITHDARKMATTER
Inordertostudythegravitationaleffectsofhypotheticaldarkmatteronplanetarymotion,weneedasolutionofEinstein’sfieldequationsforastatic,sphericallysymmetricspace–timeandagivendistributionofdarkmatter.Theline-elementforastatic,sphericallysymmetricgravitationalfieldcaningeneralbewrittenas2
ds2=−e2µ(r)dt2+e2λ(r)dr2+r2dΩ2.
(1)
Weshallassumethatthedarkmatterhasaconstantdensityρ0(withinthesolarsystem).AtasurfacewherethedarkmatterpressureequalsthegalacticdarkmatterpressurepG≈10−7ρG(characterizedbyvelocitiesof220km/s),wematchthegravitationalfieldofthesolarsystemtotheexteriorfieldofthegalaxy.Weshallassumethatgtt≈−1atthisdistance
(thisassumptionisalwaysusedinlocalgravitationalproblems).Thenthett-componentofthefieldequationstakestheform
d
r
−
8π
M+4π
=−(ρ0+p)2drr−2r(M+
4π
M+4π
=−(ρ0+p).drr(r−2M)
Integrationleadsto
p=
K11−
2M
2M
−1
−16M2πρ0/3
exp−
2π
e−
r
2π
dr
=−(ρ0+p)
dµ
ρ0+p4
2
whereK2isanewintegrationconstant.Insertingthepressurefromequations(3)leadsto
gtt=−K21−
2M
3
ρ0r2
.
TheconstantK2canbedeterminedbydemandingthatgtt=−1atthesurfacer=rmatchwherethepressureequalsthegalacticdarkmatterpressurepG.Thisradiusisgivenby
rmatch=
andhence
K2=exp−
3
ρ0+pG
1/2
2
(4)
4π
ρ0+p0
≈1
accordingtotheassumptionthatp≪ρ0.
Ourmodelofthedarkmatterfilledspace–timeinthesolarsystemisthusrepresentedbytheapproximateline-element
ds=−1−
2
2M
3
ρ0r
2
dt+
2
dr2−8πr
3
ρ0r2isasmallnumber.Atlarger
scaleswherethedarkmatterpressureequalsitsgalacticvalue,thegravitationalfieldisofcoursedeterminedbythemassdistributionofthegalaxy.
3.PERIHELIONPRECESSION
TheLagrangefunctionforatestparticlemovingintheθ=π/2planeinthegeometryspecifiedbyequation(5),is
2L=−1−
2M
3
ρ0r
2
˙2+t
r
r˙2
−
8π
rr
+−
4π8π
gtt
+
p2r
gφφ5
=−1.
TofirstorderinMandρ0,onefinds
r˙=1−
2
2M
3
ρ0r
2
−1−
p2φ
dφ2
+u=
M
3
ρ0
2
Pφ
+3Mu20+
4π
2
u30pφ
.(9)
Substitutingu0(1+ε)foruintoequation(8)withε≪1,andusingequation(9)and
calculatingtofirstorderinε,weget
dε
2u40pφ
2
ε.
TheEinsteinprecessioncomingfromthesolarmassM=M⊙is
∆φ0=6πM⊙u0.
Inaddition,thereisadarkmatterinducedprecession
∆φdark=−4π2
ρ0
(10)
ρ0
3
2π
5
M⊙p2φu0
|δφobs|
2GM⊙
2π
6
∆φ0
.
wherewehaveinsertedNewton’sconstantGandthespeedoflightcinordertosimplifythenumericalcalculations.TheperihelionprecessionoftheasteroidIcarusisknownwithabout8%accuracy.ItsdistancefromtheSunis1.076A.U.WithM⊙=2×1033gandr0=1.076A.U.=1.61×1013cmweobtain
ρ01.8×10−16g/cm3.
(13)
Thisvalueisaboutsevenordersofmagnitudeabovethemeangalacticmassdensity,anditshowsthatmeasurementsoftheperihelionprecessionoftheplanetsdonotputstrictlimitsonthedensityofbounddarkmatter.Notethatwiththisdensity,themassofsphericallysymmetricbounddarkmatterofconstantdensity(13)withintheorbitofPlutoislessthan2×10−5M⊙andthusinagreementwithourassumptions.WithinUranuswefindalimitof
Mdark(rU)2×10−6M⊙≈0.6M⊕
whereM⊕istheEarth’smass.ThisboundisofthesamesizeastheboundfoundbyAndersonetal.(1989)bynumericallyanalyzinghowtheorbitofUranuswouldbeaffectedbydarkmatter.Recently,theboundobtainedbysuchmethodshasbeenstrengthenedtoaround0.2M⊕(Anderseonetal.1995),butasimilarimprovementshouldalsobepossibleusingimprovedperihelionprecessionobservations.
Letusfinallychecktheassumptionthatthedarkmatterhasapressurewhichismuchlessthanitsenergydensity.Themaximumpressureisatthecenterofthesolarsystem.Now,ifwerequirethatthemodelisvalidouttotheOortcloudatseveralthousandA.U.andthatmacthingtothegalacticdarkmatterdistrubutiontakesplacehere,wefindthatthepressuregradientnecessaryforhydrostaticequilibriumisverysmall.Usingequation(4)andmatchingat,say,rmatch=5000A.U.gives
p0−pG
darkmatterisnon-baryonic.Wedonotknowwhatthenon-baryonicdarkmatteris.Onepossibility(Accetta&Steinhardt1991;Steinhardt&Will1994)isthatthedarkmatterinpartisoscillationenergycausedbyrapidoscillationsofNewton’sconstant.AneffectiveBrans–Dickefieldisaconsequenceofmanyunificationschemesandalsoaningredientofextendedinflationarymodels(La&Steinhardt1989).Extendedinflationwoulddrivethescalarfieldawayfromtheminimumofitspotential,andthefieldwouldthenstarttooscillatewheninflationends.Thispossibilityonlyillustratesthatdarkmattermaybehaveratherdifferentlyfromnormalmatterandthatnostoneshouldbeleftunturnedinthesearchforthemasswhichseemstomakeupmostoftheuniverseweinhabit.
ACKNOWLEDGMENTS
ItisapleasuretothankSlavaG.Turyshevforpointingoutsomeusefulreferences.Wearealsoindebtedtoananonymousrefereeforconstructivecriticism.
8
REFERENCES
Accetta,F.&Steinhardt,P.J.1991,Phys.Rev.Lett.,67,298.
Anderson,J.D.,Lau,E.L.,Taylor,A.H.,Dicus,D.A.,Teplitz,D.C.,andTeplitz,V.L.1989,ApJ,342,539.
Anderson,J.D.,Lau,E.L.,Krisher,T.P.Dicus,D.A.,Rosenbaum,D.C.,andTeplitz,V.L.1995,ApJ(inpress).
Begeman,K.G.,Broeils,A.H.,&Sanders,R.H.1991,MNRAS,249,523.
Bekenstein,J.1992,inProceedingsofthe6thMarcelGrossmannMeetingonGeneralRel-ativity,ed.H.Sato&T.Nakamura(Singapore:WorldScientificPubl.),905Braginsky,V.B.1994,Class.QuantumGrav.,11,A1.
Braginsky,V.B.,Gurevich,A.V.,&Zybin,K.P.1992,Phys.Lett.A,171,275.Kent,S.M.1987,AJ,93,816.
Klioner,S.&Soffel,M.1993,Phys.Lett.A,184,43.
La,D.&Steinhardt,P.J.1989,Phys.Rev.Lett.62,376.Lake,G.1989,ApJ,345,L17.Milgrom,M.1983,ApJ,270,365.Milgrom,M.1988,ApJ,333,689.Milgrom,M.1991,ApJ,367,490.Nordtvedt,K.L.1994,ApJ,437,529.Nordtvedt,K.L.,M¨uller,J.&Soffel,M.1995,A&A,293,L7.Sanders,R.H.1990,Astron.Astrophys.Rev.,2,1.Soleng,H.H.1993,BAAS,25,796.
Soleng,H.H.1994,Gen.Rel.Grav.,26,149.Soleng,H.H.1995,Gen.Rel.Grav.,27,367.
Steinhardt,P.J.&Will,C.M.1995,High-frequencyoscillationsofNewton’sconstantin-ducedbyInflation,Phys.Rev.D(inpress).Tremaine,S.1992,PhysicsToday,45,28.
Tully,R.B.&Fisher,J.R.1977,A&A,54,661.
Zhytnikov,V.V.andNester,J.M.1994,Phys.Rev.Lett.,73,2950.
9
因篇幅问题不能全部显示,请点此查看更多更全内容