您的当前位置:首页正文

湖北省武汉市华中师范大学第一附属中学2016届高三数学5月适应性考试试题 文(扫描版)

2023-06-17 来源:好走旅游网


1

2

3

4

华中师大一附中

2016届高三五月适应性考试试题 文科数学( A/B 卷)答案

一、选择题: CDCABB,ADDADC 二. 填空题: 13. 1或 2 14. 三.解答题:

17. 解 (I)设数列an的公差为d,由S1111a6143,a613.

又a5a624,解得a511,d2,

因此an的通项公式是an2n1(nN),„„„„„„„„„„„„4分

51 15. 16.②④

55所以

11111(), anan1(2n1)(2n3)22n12n3从而前n项的和为

111 3557(2n1)(2n3)1111111() 235572n12n3n111(). „„„„„„„„„„„„8分

6n9232n3an1(II)因为a13,24n,Tn4n3.当n1时,b17;

当n2时,bnTnTn14n4n134n1;

所以bn14bn(n2.若bn是等比数列,则有b24b1,而b17,b212,所以与

b24b1矛盾,

故数列bn不是等比数列. „„„„„„„„„„„12分 18. (I)证明 连接AC交BQ于N,连接MN,因为

ADC900,Q为AD的中点,所以N为AC的中点,

又M为PC的中点,故MN∥PA,又MN平面BMQ,所以

PA∥平面BMQ.„„„„„„„„„„„„„„„„„„„„6分

(II)解 由(1)可知,PA∥平面BMQ,所以点P到平面BMQ的距离等于点A到平面BMQ的距离,

所以VPBMQVABMQVMABQ,„„„„„„„„„„„„„„9分

5

取CD的中点K,连接MK,所以MK∥PD,MK又PD底面ABCD,所以MK底面ABCD. 又BC1PD1. 21AD1,PDDC2,所以AQ1,BQ2, 2MQ3,NQ1,

所以VPBMQVABMQVMABQ1, 3SBMQ2,

则点P到平面BMQ的距离d3VPBMQSBMQ2. „„„„„„„„12分 2aa0.17 ,所以

1800180019. 解:(I)根据题意得高三年级女生抽到的概率为

所以a18000.17306(人) „„„„„„3分 (II)由表格知高二年级的总人数为1800(260290)(344306)600人, 所以高二年级应抽取的人数为6060020(人) „„„„„„„„6分 1800(III)设事件A=“高二年级男生比女生多”,求概率P(A)

用b表示高二年级男生的人数,用c表示高二年级女生的人数,且bc600则满足

b260,c200的(b,c)配对的情况为(260,340),(261,339)(400,200),共有141种情况,而事

件A发生的(b,c)配对的情况为(301所以高二年,299),(302,298),,(400,200)共有100种情况,级男生比女生多的概率为P(A)100„„„„„„„„„„12分 141222

2c1b20. 解:(Ⅰ)设F(c,0),则由题意得cab,,23, a2aCa2,b3c,,∴1椭 解得圆的方

程为

x2y1.„„„„„„„„„„„„„„„„„„„„„„„„„„„4分

43(Ⅱ)由题意,直线l的斜率k存在.设l的方程为ykx1,

联立椭圆方程得34k2x28k2x4k2120.

6

2

28k4k12, 设Ax1,y1,Bx2,y2,则x1x2,xx1234k234k229k∴y1y2.„„„„„„„„„„„„„„„„„„„„„„„„„„6分 34k22∴OAOBx1x2y1y2125k2.

34k2∵OAOB9,∴125k29,解得k23.„„„„„„„„„„„„8分

5534k由题意可得,APBQ等价于ABPQ.„„„„„„„„„„„„„„9分

2设圆E的半径为r,

22k2. PQ2r∵AB1k2x1x21212k,

k2134k2将k23代入ABPQ解得r2331.„„„„„„„„„„„„„„„„„11分

100故所求直线l的方程为y3x1,即3xy30与3xy30;

圆E的方程为x2y2331.„„„„„„„„„„„„„„„„„„„12分

100221. 解:(I)当

me时,f(x)lnxe,易知函数f(x)的定义域为(0,),所以x1exe22,当x(0,e)时,f(x)0,此时f(x)在(0,e)上是减函数;当x(e,)xxx时,f(x)0,此时f(x)在(e,)上是增函数,所以当xe时, f(x)取得极小值

ef(e)lne2„„„„„„„„„„„„„„„„4分

ex1mx13(II)因为函数g(x)f(x)2(x0),令g(x)0,得mxx(x0),设

3xx331h(x)x3x(x0),所以h(x)x21(x1)(x1),当x(0,1)时,h(x)0,此时

3f(x)当x(1,)时,此时h(x)在(1,)上为减函数,所以当x1h(x)在(0,1)上为增函数;h(x)0,时,h(x)取极大值h(1)函数h(x)的图像知:

1211,令h(x)0,即x3x0,解得x0或x3,由3332时,函数ym和函数yh(x)无交点; 32当m时,函数ym和函数yh(x)有且仅有一个交点;

32当0m时,函数ym和函数yh(x)有两个交点;

3当m

7

④当m0时,函数ym和函数yh(x)有且仅有一个交点。

综上所述,当m零点,当0m22时,函数g(x)无零点;当m或m0时,函数g(x)有且仅有一个332时,函数g(x)有两个零点„„„„„„„„„„„„„„„„„„„„8分 3f(b)f(a)1恒成立,等价于f(b)bf(a)a恒成立,设(III)对任意ba0,bam(x)f(x)xlnxx(x0),则(x)在(0,)上单调递减,

x1m所以(x)210在(0,)上恒成立,

xx1211122所以mxx(x)在(0,)上恒成立,因为x0,xx,所以m,当且

2444仅当x111时,m,所以实数m的取值范围是, „„„244,DE,AD„„„„„„„„„„„„„„„„„„„„12分

AC是⊙O1的切线,BACD,ACE22.(I)证明:连接AB,又B∥EC„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„5分

(II)解:设BPx,PEy,PA6,PC2,xy12 ①

AD∥EC,9x6DPAP ② ,y2PEPCx3x12由①②可得或(舍去). „„„„„„„„„„„„„„„„„„8分

y4y1DE9xy16,AD是⊙O2的切线,AD2DBDE916144,

AD12„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„10分

23. 解:对于曲线M,消去参数,得普通方程为yx21,|x|2,曲线M是抛物线的一部分;对于曲线N,化成直角坐标方程为xyt,曲线N是一条直线.

(1)若曲线M,N只有一个公共点,则直线N过点(2,1)时满足要求,并且向左下方平行移动

直到过点(2,1)之前总是保持只有一个公共点,再接着从过点(2,1)开始向左下方平行移动直到相切之前总是有两个公共点,此时不合题意,所以21t21满足要求.

相切时仍然只有一个公共点,由txx21,得x2x1t0,141()t0,求得t5. 48

5综上,可得t的取值范围是21t21或t.„„„„„„„„„„5分

42(2)当t2时,直线N:xy2,设M上的点为(x0,x01),|x0|2,

13(x0)2|xx01|2432, 则曲线M上的点到直线N的距离为d82220当x0时取等号,满足|x0|2,所以所求的最小距离为1232.„„„„10分 824. 解:(1)由题意知x26xm0在R上恒成立,即mx26x恒成立. x26x(x2)(6x)8(当且仅当(x2)(6x)0即2x6时等号成立)

m,8...........................................................................

.............................................5分 (2)由(1)知n8,即

828, 3aba2b311822ab3aba2b3aba2b(163aba2b) 22182192(3aba2b)2=(32)=当且仅当163aba2b1689a3ba20即时等号成立 2838b3aba2b2032ab的最小值是

29. ........................ ........................ .............................8.......................10分

9

因篇幅问题不能全部显示,请点此查看更多更全内容