Pleasemakesurethatyouhavecorrectlycodedyourname,dateofbirthandgradeontheStudentInformationForm,andthatyouhaveansweredthequestionabouteligibility.1.
(a)Thereisonepair(a,b)ofpositiveintegersforwhich5a+3b=19.
Whatarethevaluesofaandb?
(b)Howmanypositiveintegersnsatisfy5<2n<2017?
(c)Jimmybought600Eurosattherateof1Euroequals$1.50.Hethenconverted
his600Eurosbackintodollarsattherateof$1.00equals0.75Euros.HowmanyfewerdollarsdidJimmyhaveafterthesetwotransactionsthanhehadbeforethesetwotransactions?
2.
(a)Whatareallvaluesofxforwhichx=0andx=1and(b)Inamagicsquare,thenumbersineach
row,thenumbersineachcolumn,andthenumbersoneachdiagonalhavethesamesum.Inthemagicsquareshown,whatarethevaluesofa,bandc?
511
=+?
x(x−1)xx−1
0c
204−12
a
b
(c)(i)Forwhatpositiveintegernis1002−n2=9559?
(ii)Determineonepair(a,b)ofpositiveintegersforwhicha>1andb>1and
ab=9559.
www.linstitute.net3.
(a)Inthediagram,ABCisright-angledatB
andACDisright-angledatA.Also,AB=3,BC=4,andCD=13.WhatistheareaofquadrilateralABCD?
B4C
3A
13
(b)ThreeidenticalrectanglesPQRS,WTUV
andXWVYarearranged,asshown,sothatRSliesalongTX.Theperimeterofeachofthethreerectanglesis21cm.Whatistheperimeterofthewholeshape?
DPW
SX
QT
RUVY(c)Oneofthefacesofarectangularprismhasarea27cm2.Anotherfacehasarea
32cm2.Ifthevolumeoftheprismis144cm3,determinethesurfaceareaoftheprismincm2.(a)Theequationsy=a(x−2)(x+4)andy=2(x−h)2+krepresentthesame
parabola.Whatarethevaluesofa,handk?(b)Inanarithmeticsequencewith5terms,thesumofthesquaresofthefirst3terms
equalsthesumofthesquaresofthelast2terms.Ifthefirsttermis5,determineallpossiblevaluesofthefifthterm.
(Anarithmeticsequenceisasequenceinwhicheachtermafterthefirstisobtainedfromtheprevioustermbyaddingaconstant.Forexample,3,5,7,9,11isanarithmeticsequencewithfiveterms.)
4.
5.
(a)Danwasborninayearbetween1300and1400.Stevewasborninayearbetween
1400and1500.EachwasbornonApril6inayearthatisaperfectsquare.Eachlivedfor110years.InwhatyearwhiletheywerebothaliveweretheiragesbothperfectsquaresonApril7?(b)DetermineallvaluesofkforwhichthepointsA(1,2),B(11,2)andC(k,6)form
aright-angledtriangle.
6.
(a)Thediagramshowstwohillsthatmeet
atO.Onehillmakesa30◦anglewiththehorizontalandtheotherhillmakesa45◦anglewiththehorizontal.PointsAandBareonthehillssothatOA=OB=20m.VerticalpolesBDandACareconnectedbyastraightcableCD.IfAC=6m,whatisthelengthofBDforwhichCDisasshortaspossible?
CA30°DBO45°(b)Ifcosθ=tanθ,determineallpossiblevaluesofsinθ,givingyouranswer(s)as
simplifiedexactnumbers.
www.linstitute.net7.
(a)Linhisdrivingat60km/honalongstraighthighwayparalleltoatraintrack.
Every10minutes,sheispassedbyatraintravellinginthesamedirectionassheis.Thesetrainsdepartfromthestationbehindherevery3minutesandalltravelatthesameconstantspeed.Whatistheconstantspeedofthetrains,inkm/h?(b)Determineallpairs(a,b)ofrealnumbersthatsatisfythefollowingsystemof
equations:
√√
a+b=8
log10a+log10b=2
Giveyouranswer(s)aspairsofsimplifiedexactnumbers.
8.
(a)Inthediagram,linesegmentsACandDF
aretangenttothecircleatBandE,respectively.Also,AFintersectsthecircleatPandR,andintersectsBEatQ,asshown.If∠CAF=35◦,∠DFA=30◦,and∠FPE=25◦,determinethemeasureof∠PEQ.
APDBQERC(b)Inthediagram,ABCDandPNCDare
squaresofsidelength2,andPNCDisperpendiculartoABCD.PointMischosenonthesamesideofPNCDasABsothatPMNisparalleltoABCD,sothat∠PMN=90◦,andsothatPM=MN.DeterminethevolumeoftheconvexsolidABCDPMN.
FP
MN
DA
BC
www.linstitute.net9.
Apermutationofalistofnumbersisanorderedarrangementofthenumbersinthatlist.Forexample,3,2,4,1,6,5isapermutationof1,2,3,4,5,6.Wecanwritethispermutationasa1,a2,a3,a4,a5,a6,wherea1=3,a2=2,a3=4,a4=1,a5=6,anda6=5.
(a)Determinetheaveragevalueof
|a1−a2|+|a3−a4|
overallpermutationsa1,a2,a3,a4of1,2,3,4.(b)Determinetheaveragevalueof
a1−a2+a3−a4+a5−a6+a7
overallpermutationsa1,a2,a3,a4,a5,a6,a7of1,2,3,4,5,6,7.(c)Determinetheaveragevalueof
|a1−a2|+|a3−a4|+···+|a197−a198|+|a199−a200|
(∗)
overallpermutationsa1,a2,a3,...,a199,a200of1,2,3,4,...,199,200.(Thesumlabelled(∗)contains100termsoftheform|a2k−1−a2k|.)
10.
ConsiderasetSthatcontainsm≥4elements,eachofwhichisapositiveintegerandnotwoofwhichareequal.WecallSboringifitcontainsfourdistinctintegersa,b,c,dsuchthata+b=c+d.WecallSexcitingifitisnotboring.Forexample,{2,4,6,8,10}isboringsince4+8=2+10.Also,{1,5,10,25,50}isexciting.(a)Findanexcitingsubsetof{1,2,3,4,5,6,7,8}thatcontainsexactly5elements.(b)Provethat,ifSisanexcitingsetofm≥4positiveintegers,thenScontainsan
m2−m
integergreaterthanorequalto.
4(c)Definerem(a,b)tobetheremainderwhenthepositiveintegeraisdividedbythe
positiveintegerb.Forexample,rem(10,7)=3,rem(20,5)=0,andrem(3,4)=3.
Letnbeapositiveintegerwithn≥10.Foreachpositiveintegerkwith1≤k≤n,definexk=2n·rem(k2,n)+k.Determine,withproof,allpositiveintegersn≥10forwhichtheset{x1,x2,...,xn−1,xn}ofnintegersisexciting.
因篇幅问题不能全部显示,请点此查看更多更全内容