二次函数经典难题(含精解)
一.选择题(共1小题)
1.顶点为P的抛物线y=x﹣2x+3与y轴相交于点A,在顶点不变的情况下,把该抛物线绕顶点P旋转180°得到一个新的抛物线,且新的抛物线与y轴相交于点B,则△PAB的面积为( ) A. 1 B. 2 C. 3 D. 6
二.填空题(共12小题)
2.作抛物线C1关于x轴对称的抛物线C2,将抛物线C2向左平移2个单位,向上平移1个单位,得到的抛物线C的函数解析式是y=2(x+1)﹣1,则抛物线C1所对应的函数解析式是 _________ .
3.抛物线关于原点对称的抛物线解析式为 _________ .
4.将抛物线y=x+1的图象绕原点O旋转180°,则旋转后的抛物线解析式是 _________ .
5.如图,正方形ABCD的顶点A、B与正方形EFGH的顶点G、H同在一段抛物线上,且抛物线的顶点在CD上,若正方形ABCD边长为10,则正方形EFGH的边长为 _________ .
6.如果一条抛物线y=ax+bx+c(a≠0)与x轴有两个交点,那么以该抛物线的顶点和这两个交点为顶点的三角形称为这条抛物线的“抛物线三角形”.在抛物线y=ax+bx+c中,系数a、b、c为绝对值不大于1的整数,则该抛物线的“抛物线三角形”是等腰直角三角形的概率为 _________ .
7.抛物线y=ax+bx+c经过直角△ABC的顶点A(﹣1,0),B(4,0),直角顶点C在y轴上,若抛物线的顶点在△ABC的部(不包括边界),则a的围是 _________ .
8.已知抛物线y=x﹣6x+a的顶点在x轴上,则a= _________ ;若抛物线与x轴有两个交点,则a的围是 _________ .
9.抛物线y=x﹣2x+a的顶点在直线y=2上,则a= _________ .
2
222
2
2
2
2
2
专业资料
WORD
10.若抛物线y=x﹣2x+a的顶点在直线x=2上,则a的值是 _________ .
11.若抛物线的顶点在x轴上方,则m的值是 _________ .
12.如图,二次函数y=ax+c图象的顶点为B,若以OB为对角线的正方形ABCO的另两个顶点A、C也在该抛物线上,则a•c的值是 _________ .
13.抛物线y=ax+bx﹣1经过点(2,5),则代数式6a+3b+1的值为 _________ .
三.解答题(共17小题)
14.已知抛物线C1的解析式是y=2x﹣4x+5,抛物线C2与抛物线C1关于x轴对称,求抛物线C2的解析式.
15.将抛物线C1:y=(x+1)﹣2绕点P(t,2)旋转180゜得到抛物线C2,若抛物线C1的顶点在抛物线C2上,同时抛物线C2的顶点在抛物线C1上,求抛物线C2的解析式.
16.如图,抛物线y1=﹣x+2向右平移1个单位得到抛物线y2,回答下列问题: (1)抛物线y2的顶点坐标 _________ ; (2)阴影部分的面积S= _________ ;
(3)若再将抛物线y2绕原点O旋转180°得到抛物线y3,求抛物线y3的解析式.
2
2
2
2
2
2
2
专业资料
WORD
17.已知抛物线L:y=ax+bx+c(其中a、b、c都不等于0),它的顶点P的坐标是,与y轴的交点是M(0,c).我们称以M为顶点,对称轴是y轴且过点P的抛物线为抛物线L的伴随抛物线,直线PM为L的伴随直线.
(1)请直接写出抛物线y=2x﹣4x+1的伴随抛物线和伴随直线的解析式: 伴随抛物线的解析式 _________ ,伴随直线的解析式 _________ ;
(2)若一条抛物线的伴随抛物线和伴随直线分别是y=﹣x﹣3和y=﹣x﹣3,则这条抛物线的解析式是 _________ ;
(3)求抛物线L:y=ax+bx+c(其中a、b、c都不等于0)的伴随抛物线和伴随直线的解析式;
(4)若抛物线L与x轴交于A(x1,0)、B(x2,0)两点,x2>x1>0,它的伴随抛物线与x轴交于C、D两点,且AB=CD.请求出a、b、c应满足的条件.
18.设抛物线y=x+2ax+b与x轴有两个不同的交点
(1)将抛物线沿y轴平移,使所得抛物线在x轴上截得的线段的长是原来的2倍,求平移所得抛物线的解析式;
(2)通过(1)中所得抛物线与x轴的两个交点及原抛物线的顶点作一条新的抛物线,求新抛物线的表达式.
19.已知抛物线C:y=ax+bx+c(a<0)过原点,与x轴的另一个交点为B(4,0),A为抛物线C的顶点.
(1)如图1,若∠AOB=60°,求抛物线C的解析式;
(2)如图2,若直线OA的解析式为y=x,将抛物线C绕原点O旋转180°得到抛物线C′,求抛物线C、C′的解析式;
(3)在(2)的条件下,设A′为抛物线C′的顶点,求抛物线C或C′上使得PB=PA′的点P的坐标.
20.如图,已知抛物线y=ax+bx+交x轴正半轴于A,B两点,交y轴于点C,且∠CBO=60°,∠CAO=45°,求抛物线的解析式和直线BC的解析式.
21.已知:如图,抛物线y=﹣x+bx+c经过直线y=﹣x+3与坐标轴的两个交点A、B,此抛物线与x轴的另一个交点为C,抛物线的顶点为D. (1)求此抛物线的解析式;
(2)点M为抛物线上的一个动点,求使得△ABM的面积与△ABD的面积相等的点M的坐标.
专业资料
222
2
2
2
2
2
WORD
22.已知抛物线的顶点为P,与x轴正半轴交于点B,抛物线C2与抛物线C1关于x轴对称,将抛物线C2向右平移,平移后的抛物线记为C3,C3的顶点为M,当点P、M关于点B成中心对称时,求C3的解析式.
23.如图,抛物线y=x+bx﹣c经过直线y=x﹣3与坐标轴的两个交点A,B,此抛物线与x轴的另一个交点为C,抛物线的顶点为D. (1)求此抛物线的解析式;
(2)点P为抛物线上的一个动点,求使S△APC:S△ACD=5:4的点P的坐标.
24.已知一抛物线经过O(0,0),B(1,1)两点,且解析式的二次项系数为﹣(a>0). (Ⅰ)当a=1时,求该抛物线的解析式,并用配方法求出该抛物线的顶点坐标; (Ⅱ)已知点A(0,1),若抛物线与射线AB相交于点M,与x轴相交于点N(异于原点),当a在什么围取值时,ON+BM的值为常数?当a在什么围取值时,ON﹣BM的值为常数? (Ⅲ)若点P(t,t)在抛物线上,则称点P为抛物线的不动点.将这条抛物线进行平移,使其只有一个不动点,此时抛物线的顶点是否在直线y=x﹣上,请说明理由.
25.如图,已知抛物线C1:y=a(x+2)﹣5的顶点为P,与x轴相交于A、B两点(点A在点B的左侧),点B的横坐标是1; (1)求a的值;
(2)如图,抛物线C2与抛物线C1关于x轴对称,将抛物线C2向右平移,平移后的抛物线记为C3,抛物线C3的顶点为M,当点P、M关于点O成中心对称时,求抛物线C3的解析式.
专业资料
2
2
WORD
26.如图,抛物线y=ax+bx+3经过A(﹣3,0),B(﹣1,0)两点.
(1)求抛物线的解析式;
(2)设抛物线的顶点为M,直线y=﹣2x+9与y轴交于点C,与直线OM交于点D.现将抛物线平移,保持顶点在直线OD上.若平移的抛物线与射线CD(含端点C)只有一个公共点,求它的顶点横坐标的值或取值围.
27.如图,抛物线y=a(x+1)的顶点为A,与y轴的负半轴交于点B,且OB=OA. (1)求抛物线的解析式;
(2)若点C(﹣3,b)在该抛物线上,求S△ABC的值.
28.如图,抛物线y=x﹣2x+c的顶点A在直线l:y=x﹣5上.
(1)求抛物线顶点A的坐标及c的值;
(2)设抛物线与y轴交于点B,与x轴交于点C、D(C点在D点的左侧),试判断△ABD的形状.
2
2
2
29.如果抛物线m的顶点在抛物线n上,同时抛物线n的顶点在抛物线m上,那么我们就称抛物线m与n为交融抛物线.
(1)已知抛物线a:y=x﹣2x+1.判断下列抛物线b:y=x﹣2x+2,c:y=﹣x+4x﹣3与已知抛物线a是否为交融抛物线?并说明理由;
(2)在直线y=2上有一动点P(t,2),将抛物线a:y=x﹣2x+1绕点P(t,2)旋转180°得到抛物线l,若抛物线a与l为交融抛物线,求抛物线l的解析式;
(3)M为抛物线a;y=x﹣2x+1的顶点,Q为抛物线a的交融抛物线的顶点,是否存在以MQ为斜边的等腰直角三角形MQS,使其直角顶点S在y轴上?若存在,求出点S的坐标;若不存在,请说明理由;
2
2
2
2
2
专业资料
WORD
(4)通过以上问题的探究解决,相信你对交融抛物线的概念及性质有了一定的认识,请你提出一个有关交融抛物线的问题.
30.如图1所示,已知直线y=kx+m与x轴、y轴分别交于点A、C两点,抛物线y=﹣x+bx+c经过A、C两点,点B是抛物线与x轴的另一个交点,当x=﹣时,y取最大值. (1)求抛物线和直线的解析式;
(2)设点P是直线AC上一点,且S△ABP:S△BPC=1:3,求点P的坐标;
(3)直线y=x+a与(1)中所求的抛物线交于点M、N,两点,问:
①是否存在a的值,使得∠MON=90°?若存在,求出a的值;若不存在,请说明理由. ②猜想当∠MON>90°时,a的取值围.(不写过程,直接写结论) (参考公式:在平面直角坐标系中,若M(x1,y1),N(x2,y2),则M、N两点之间的距离为|MN|=)
2
专业资料
因篇幅问题不能全部显示,请点此查看更多更全内容