第一讲
主板芯片级专业的一个基础,对电子电路,有一定的认识,如二级管、三级管、电阻,电容、场效应管、门电路、好坏判断,型号识别、代换原则、基本的单元电路。
主板结构,主板分为4层板,6层板,8层板。6、8层板它用在服务器上,4层、6层、8层板主要在主板信号线和供电线的不同,这个电脑主板是由PCB制成的印刷电路,它是由几层塑脂胶粘合在一起,内部采用的是铜波走线,一般的PCB有4层板,如P4主板,上下层走的信号层,中间一层走的是供电,一层地线。
在主板上密密麻麻细线是信号,板子的后面细细线也信号线,比信号线稍粗的线,是供电线,供电线和地线一般走在夹层板,也就是说在主板的上下是看不到这个粗线的,这就是因为个别供电线是放在这板的两面,为了方便对信号作出修改,好的主板线路板有6层板,这种的主板的信号线之间相距较远的距离可以防止电磁干扰,6层可能有三个和四个信号层,一个接地,一个或两个电源层,用来提供足够的动力,为使系统能正常工作信号线的部局和长度是至关重要的因素,它设置的忠指尽量避免由于信号干扰成造成信号失真,市面上比较流行主板如华硕、华擎、Intel主板都是非常好的主板,相对造比较高,像杂牌主板它造价比较低,所以信号与信号之间相互干扰比较大,那其就决定好主板性能更加稳定,坏的主板都或多或少的映应系统的工作。 第一CPU认识
认识一下主板上个个的元件,以P4主板来认识一下主板上的个个元件器,第一个CPU插座,主要分为,(Socket7)它是安装P55C、P54C、K6、一代、二代系列的CPU,一般在CPU插座底部都标有非常清楚,像PGA478这个就是P4主板,(SocketCU2)、(SocketA)一般也会插
座底部标识有,主要是安装AMD生产的CPU如毒龙,速龙,散龙,两大CPU生产产家就是AMD和Intel,目前市面上最常见到的是Intel的CPU,(SocketT)它是Intel生产的LTA775上64位CPU的,(Socket754)它是AMD公司低端64位的CPU,还有(Socket939),它是安装AMD公司高端64位的CPU,(Socket940)它是安装AMD公司生产服务器版的CPU的,(SocketA)这个是安装是AMD公司的K7系列的CPU,PGA370它主要是安装Intel公司生产的P3、散扬1、一至三代的CPU,还有PGA423它主要是安装Intel公司生产的P4CPU,主要是能支持P41.3至1.84G的CPU,还有PGS78安装Intel公司的生产的P4的CPU的。 第二个芯片组
主板上的芯片,北桥芯片和南桥芯片,它是主板的心脏,芯片组它决定了这块主板的功能,像常称的810主板,指的就是北桥芯片上所标识的北桥芯片型号(BIOS的型号),如Intel公司的845,915的芯片,一般它们标识在北桥芯片上,芯片组的生产厂家有美国的Intel,台湾的威胜,(赛S),芯片组是由北桥和南桥,北桥是芯片组中起着主导作用的一个芯片,也就是这个大型的集成电路,芯片组的名称都是以北桥名称命名,它是一个大型的集成电路,它主要是负责CPU、内存、显卡等高速运行的设备的数据转输,北桥芯片主要是管理高速运行的设备,接观的可以看到密密麻麻的数据线管理周边的设备的,在主板的背面还可以看到密密麻麻的信号线从北桥连接CPU,连接CPU插座,连接内存,还有显卡(AGP)它在这里起到非常重要的作用,还有北桥芯片来决定,主板安装什么类型的CPU,上什么样的内存,安装什么显卡都有是由北桥芯来决定。 第三个,
南桥主要是管理低速运行的设备的,大型的集成电路,它的内部构成都
有哪此,在它的内部集成了很多的控制器,ISA控制总线控制器,P3—P2主板,底下黑色比较长的那个插槽,它集成ISA总线控制器,如集成ISA网卡、显卡这类的,控制器由南桥来管理,ISA总线控制器,如PCI插槽可以PCI接口的声卡,显卡、网卡这些插槽支持的类型是由南桥来决定的,还有IDE接口控制器(硬盘控制器)也集成了这个管理南桥的一个管理器。 第四个 USB接口控制器
USB接口控制器,也相当一个控制开关,也集成在南桥内部,第五个也叫DMA控制器(也叫直接内存访问),CPU在数据传输最开始和最末尾它作一个处理,其余时间由自行传输,这样大大的提高了整个系统的性能。电脑显示什么(DMAI尔)等等这种提示那就是南桥内部DMA控制器发生致命错误,一般都是无法修复的,除非你找一个同样的南桥进行BJA焊接,更换南桥,修主板修到芯片组了,就没其维修价值了。 第六个它内部还集成了一个电源管理系统,开机电路有很大关系了 第七个复位系统与复位电路有关,集成了复位控制器 第八个是CMOS电路,也是集成在南桥内部
第九个声效合成,管理声卡,内部集成一个声卡控制器 电源插座,为主板各各元器件进行供电的一个插座,早期用的是AT电源,它是12针,现在我们用的都有20针的,ATX电源,能通过远程进行定时起动关闭的电脑,如果用的是P4CPU中央处理器 Intel针对CPU在功耗方面量大的特点,在发部支出就规定了新的电源规范,ATX的电源随之提高了一个档次,ATX2.03的电源规范增加了4P和6P插头,4P插座就是辅助供电,用这种规范的电源将合系统更加稳定。ATX
主要认识几个供电线,这个供电线是对我们维修是非常重要的,以后在维修到的常用用到对地打组织的方法来判断其电源的好坏,定位闸左上第一针第二针,左下第一针第三针为橙色线3。3V,用万用表的两个表笔打要风鸣档上,同时两个针插在三个座里边和二个座里边都会有蜂鸣声,左下角第四针,这是一个绿线(开机线)高电频不开机,低电频开机,绿线对我们的维修是非常重要的,学习电路基础,主板上的高电频就是2.5V以上,低电频在0.7V和0.8V的电压,还有右上排的第一针,它是黄色线12V,第二针紫线它是紫5V,也叫待机线,在主板没有加电之前就已存在5V的供电了,灰线也叫抛 线,也叫PG信号线它与复位电路有关,还有右下排的最右边第一针和第二针就是红色5V,怎么判断主板供电线上的好坏,到底是哪个供电出现了问题,那就用到对地打阻值,主板上的地线,主板上的地线就是上螺丝的地方,和接口上搭铁皮的地方这都是主板的地线。主板维修和显示器维修有所不同,显示器一般都是红表笔测试点,黑表笔点地,主板是红表笔点地,黑表笔点测试点,比如说5V出现短路了,首先将红表笔点地,黑表笔放在红5V里面,这时它的正常阻值应该是380左右,而绿线阻值应该是600至无穷大,最小值不能低于75,橙色线对地阻值300至无穷大,打在风鸣档上,它的最小值不小于100。黄色线的对地阻值是600到无穷大,最低不低于300,还有紫线对地阻值是的正常值600至无穷大,最低不低于300,灰线正常值是600至无穷大,最低不低于30 0 各种插槽第一个AGP插槽,也叫图形加速端口,也是专为AGP显卡提供了一个插座,AGP为是Intel公司配合P2CPU开发的一个总线标准,它的控制器一般是集成在北桥内部的,AGP总线速度有一点零规
范的制定,分为1束、2束,针对不同的AGP插槽的供电是不同的,AGP1束3.3V,两束是2.5V,4束的是1.5V,8束的是0.8V。 PCI插槽,也叫外部设备互联插槽,可插PCI显卡、声卡、网卡等, 第六个,软驱口一般是用得非常少(略)。 IDE接口,连接硬盘,就是光驱数据线的接口。
内存插槽,靠近CPU座附近,内存插槽是安装内存条,不同的内存条用的内存插槽也是不一样的,如SD内存使用的是168线的接口,DDR内存它用的是184线的一个接口,中间只有一个隔断。
BIOS芯片,它是一个基本输入输出系统,是被固化在电脑中的一组程序。
第一个是上电自检,电脑在开启的一瞬间它自动检测主板上的一些关键设备,运行是否良好。第二个中断访问程序,比如和CPU、南北桥和哪些I/O设备内存接口进行数据交换的时候,它提供一个命令,比如和北桥芯片和显卡进行数据交换,这时候它就会发出一个中断信号或者请求信号,要和它不进行数据交换的时候就会发出一个中断信号。 第三个系统自举
第四个CMOS设置程序,设置能进入设置画面以后,它设置和保存的结果都保存在南桥内部了,这组设置程序却在BIOS芯片里面,常见的BIOS芯片生产厂家有华帮、SST、(飞尼可史)。键盘鼠标口(也叫PS TO)口。
第五个串口,烫口(也叫串行接口),连接烫口鼠标、键盘、外出的MODEM,主板上有时有两个,还有并口,它是连接打印机的接口,微机接口,如果主板上集成显卡的了它就会有相对应的一个显卡接口,通过数据线直接显示器相连。
USB接口,这是连接USB接口的设备,如USB的鼠标、键盘、打印机,只要支持USB接口的都可以使用USB接口。
网卡接口,主板集成了一个网络功能,网卡接口主要是用来连接网线,实现显卡功能,主板芯片集成网卡功能才有此接口。
声卡接口,连接音箱的声音输入口,声音输出口,接麦克风的一个输入口。
主板芯片级维修必需认识的芯片和各各元器件 第一个 电源管理芯片
主板上电源管理芯片,它分部得非常有规律,一般都有是靠近CPU插座,或在CPU插座附近的,CPU的插座旁边看不到别的芯片了,看到只有一些什么供电管或电感,电源管理芯片体积非常小有14脚。电源管理芯片的型号是非常多的,那它的主要作用是干什么的呢?它就是应用CPU供电电路主板中易损的元件,它的位置在一般CPU插座的附近。一般常见的型号有:AMS34063,US3004,KA5700B,RT9238、9237,HIP6021、6026。 第二个 I/O芯片
I/O故名思意,它是管理I/O设备的,主板上称为I/O设备的都有哪此呢?像在插槽上的AGP,AGP卡,PCI卡,IS卡,NM卡 。I/O芯片在主板上是一个比较特别的一个芯片,一般它四面引脚,挨得非常紧,一般我们常见到的是IT,华帮两厂家生产的,目前比较常见到的:W83627、83977、87IT、8705、IT8712、8702、8703这此常见到的I/O芯片,它也是我们维修主板上的一损件。它损坏以后表面会鼓起一个小包。另外一种,在电子电路的集成电路中有一个特征,它正常的工作的情况下有一个恒温,它特别热,说明它内部短路;特别冷说明它内部开路,它正常供电阻值是对地380Ω左右,一般它的供电脚都是有一些比较粗的线,还有旁边接滤波电容的,一般这些都有是它的供电脚。测量
它的好坏,一是用手触摸它的温度,二是通过目测,三是通过打它的阻值来判断此芯片的好坏。 第三个 串口芯片
它是管理串口设备的。有的主板有两串口芯片,有的是一个串口。常用到的串口芯片的有:GD75232、GD75185。串口芯片,如P4主板有两个串口,同时主板也有两个串口芯片,每一个芯片管理一个串口,它也是主板上的一个易损元件,损坏以后也是表面鼓包,这是最常见的。对主板进行维修的时候应先清理主板上的灰尘,这样便于目测。很多情况下少走一些歪路,在目测的时候就发现主板的一些问题。修主板先目测。 第四个 声卡芯片
它也是四面引脚的,声卡芯片在主板上是非常小的一个芯片,只要主板上有声卡接口一般都有会有声卡芯片。板载声卡一般有软声卡,硬声卡之分。是指是否有主处理芯片之分,一般软声卡没有主处理芯片,只有解码芯片,通过CPU运算代替声卡主处理芯片的作用,板载的硬声卡带有主处理芯片,很多音效处理工作就不需要CPU参与,大大提高CPU工作性能,常见的型号:ALC601、101,ALC655、CMI9739A、CMI8738、VIA1616等这是常见的声卡芯片。一般损坏后将它折掉。一般都会出现杂音,无声这种现实,一般都是它旁边的滤波电容滤波不了,在它的旁边滤波电容(以C表示的)这些贴片小的滤波电容损坏,漏电,变质引起来了,小滤波电容损坏以后,可以直接将芯片折掉不用,用一个独立声卡来代替。 第五个 监控芯片
监控芯片在Intel芯片组是比较常见的,它主要是用监控CPU的温度,风扇的转数,CPU的工作电压起着一个监控的作用。常见的监控芯片一般它也是在CPU座的附近,像Intel芯片组监控芯片都是非常常见,上462的主板一般也有监控芯片,监控芯片一般都分部在CPU插槽旁
边,但也有些没有。它和主供电是关联关系,一般损坏后可以将它折掉不用,把监控芯片折掉后,它就会映响CPU的工作,那CPU就不工作,这时测试示卡显示的FF00。注意以后看到带有监控芯片的情况下,CPU测试示卡显示FF00,这时一定要想到监控器芯片是个易损件,损坏后折掉就可以了!
还有S-AT串行接口芯片,这个是南桥通过此芯片来管理硬盘的,常见型号有:威T6420、20378串行接口芯片,现在的高档一点的主板都支持串行接口的硬盘,串行接口硬盘旁边就有一个不知名的芯片,这时应该想到常见的这两个型号,一般都是串行接口芯片,当 硬盘的时候排除电路方面故障,还有含本身故障以外一定要看清楚 接口芯片,这个也是主板一个易损元件。 开机复位芯片
开机复位芯片,它是华硕特有的一个芯片,南桥内部集成一个电源管理系统和一个复位系统,华硕主板这两大功能便由开机复位芯片来实现,华硕主板用开机复位芯片,而不用南桥来实现,这正是华硕主板的不同之处,电源或复位系统损坏以后针对别的主板来说就意味着它们的南桥报废了,若别的主板修到南北桥就没有维修的价值,但华硕主板它损坏只要电源管理系统和复位系统它直接更换芯片就可以了。 第六个 特殊元器件
是要在维修主板可能会碰到的特殊元器件,像比焦放大器,正电压稳压器。比焦放大器LL358、393、324。正电压稳压器(电压转换开关)117、1084。作为维修会判断元器件的好坏和代换原则这是至关重要的。记住特殊元器件的输入角,输出角还有调整角,一般它损坏表面现象也可以看出来,有的有小亮点,或烧出个小洞,这些都可以直观的看出来。还有观察不出来的情况,那我们知道输入输出角就直接用万用表打在直流20档上,直接测它的输入输出角的电压,如果输入输出角电压正常那
就可以判断此芯片没有问题了,如果是输入角没有电压,那就找一下特殊元器件,输入角的后级电路了。 第七个 主板的时钟发生器
时钟发生器是由时钟芯片和一个14.318MHZ的晶振共同组成。它共同组成一个时钟发生器经过内部升频降频以后,为主板上的所有的设备提供了一个工作频率,就是一个提供芯脉跳动,我们可以形象的将主板上的所有设备比喻为5个工作人员,这些工作人员要想正常工作就必需有个动力源,也就是芯脉跳动。如果把CPU比喻为人的大脑,那时钟发生器就是整块主板的心脏,如果心脏(时钟发生器)停止跳动,那主板就会停止工作,可见它的重要性。时钟发生器非常有规律,时钟发生器和14。318的晶振连在一起,共同组成一个时钟发生器,主板加电以后通过它们内部将时钟信号送往CPU、北桥、内存、南桥、AP插槽,IS插槽、PCI插槽、KMA插槽、硬盘,将这些芯脉跳动送给它们。常见的这个时钟芯片CSC这是个最常见的时钟芯片。
1:开机电路检修流程 2:CPU电路和检修 3:时钟电路
主板的开机电路
主板的开机电路,主板的开机电路由两部分组成。一个是主开机电路,一个是CMOS电路,
CMOS电路包括(CMOS、实时晶振、跳线)小的元器件组成,现在主板的电路设计非常复杂,也非常快,但是基本的电路是大致相同的,只要掌握其中的一种开机电路的原理,在市面上不管是什么样的开机电路都可以很快的进行检修,这是一个典型的威胜芯片组的开机电路,还有Intel芯片组的开机电路就更加容易,Intel芯片组的开机电路一般都是通过I/O来实现的。I/O芯片里面它集成了一个电源管理系统,在南桥内部也集成了一个电源管理系统,也就是说是一个电源开关,这个电源开关它起到了一个什么样的作用呢,就是你给它一个触发信号它会将这个电源开关打开,使ATX电源所有供电为主板上的这些需要供电的元器件进行供电,让它们进行稳定工作。
在讲开机电路之前,先熟悉一下与开机电路相关的一些无器件。第一个NQ(南桥),它内部集成了一个电源管理系统,实时晶振32。768KHZ,它的主要作用是为南桥内部作一个起始的麦冲。第二个作用就是使客户的时间和电脑的时间保持一致。第三个CMOS电池,旁边的CMOS跳线,一般很有规律,三根针,一根接地,中间一根南桥相连,最边上的一根和CMOS电池相连,CMOS电池的作用是在主板关机以后保持电脑上所设置的一些信息,若CMOS电池没有电了,那信息就丢失了。 实时晶振
晶振损坏,电脑上的时间跳得特别慢或特别快,总之和客户的时间不一致,90%都有是实时晶振老化引起的,通过万表测两个引脚之间的电压差,正常的电压差在1。9V左右,通过手触摸两个引脚,这样主板就可以末名加电,这种现象也是实时晶振老化,时间跳得快慢可以判断它损坏,所以实时晶振在开机电路中是一个非常易损元件,针对主板不加电这情况,实时晶振是检修的一个重点。
绿线,也叫开机线。高电频不开机,低电频开机。高电频也就是2。5V以上的电压针对主板来说,低电频0。8V以下的电压。
紫5V,也叫紫线(5VSB),它叫待机线,在按主机面板开关前,主板上就已经有5V的电压存在相关电路上。
第5个 1117正电压稳压器
1117正电压稳压器(变压转换开关)。紫5V从第三脚输入,从第二脚输出,经过内部转化之
后输出两组电压,一组经过R2472,R1680到开关针上,另一组经过二级管到CMOS跳线上。当点击主机面上的开关,将刚才紫5V送过来的电压,瞬间接地那整条供电线上属于一个低电频,有一个低电频去触发南桥内部电源管理系统,当南桥内部电源管理系统接到这一触发信号后,便发出一个控制信号输出一个高电频将三级管处于导通状态,这时绿线将高电频对地,绿线至为低电频,那就实现开机了。开机后绿线为恒定的低电频,这就是开机电路的一个工作过程。那从电路图上想像开关到南桥,从南桥到绿线之间接了若干元器件,若主机不能加电,那重点检修从开关到南桥这部分线路,从南桥到绿线的部分线路,其它的辅助电路也要相对去重视。从开机电路上还可以分析很多种情况,Intel芯片组都是通过I/O芯片,从图上完全可以视NQ(南桥)视为I/O芯片,那到底是通过I/O开机还是通过南桥来开机呢?这里有个规律,威胜芯片组,南北桥是威胜芯片组的一般都是通过南桥来开机,Intel芯片组一般都是通过I/O来开机的,所以针对主板不能加电的现象是非常简单的。这就贵在对电路的熟悉。首先会跑电路,牵扯到信号线和供电线,地线,那怎么跑开机电路呢?先找到开关针,开关针在主板上有很多种标识方法:Powet-SW
在主板上都可以看到这样的标识,开关针一般靠近主板的最边上的位置,若标识最边上没有看到,一般会分部了南桥旁边,北桥旁边,PCI插槽旁边,一般都能找到开关针的标识方法。 那怎么跑这个线路呢?找到标识针后,从没有接地针,往南桥的方向去跑,上下走的信号,4层板中间走的供电和地线,从没有接地的那一针,看一下开关针背面有没有相对应的信号线,如果有,沿着信号线的方向去走就行了。比如像这块主板开关是68针,跑的这个信号线,跑到一个孔没有了,这时候用万用表打在蜂鸣档上,一支表笔点放这个孔,另一支表笔在板子的另一面找它相对应的那一孔,正好有一线与它又相接起来,最终它是连接南桥的。
比如说开关电路里面的R1680(电阻)坏了,电阻损坏了电阻值无穷大,点击开关针它的信号就传输不到南桥内部,它就不能触发南桥内部电源管理系统,所以跑的电路重要性。南桥和绿线接的电路,一般用万用表,点入绿线,从绿线往反方向去跑,绿线一般很有规律出来以后会接一些小的供电管,一些门电路,这时就可以点绿线,另一支笔表在它的周围,南桥旁边,电源插座旁边找三级管,一般主板上的电路分部是很有规律的,后期三级管它不会设置在任何一
个地方,一般都会设置在BTF电源的周围或南桥的周围找相关的元器件,有一些非常明显故障现象可以直接上来更换元件,比如后期的三级管击穿, 击穿三级管,
当没点开关之前,只要给ATX电源加电,这时主板就会自动开机。后期三级管开路,有触发信号但绿线为高电频,实现不了开机过程,这时找到三级管用万用表来判断它的正向阻值。 开机电路的流程图
CPU主供电电路
显示器在不亮,检修重点在CPU主供电电路,CPU主供电电路是在维修中最易损坏的一个区域,它损坏后测试卡显示FF00,主板可以加电,但CPU不工作因为CPU需要一个稳定供电电流,才能工作。CPU主供电损坏的特征,如一些网吧的,个人用户,单位用户可以很明显的看到周围电容鼓包漏液,电容防爆槽爆开。接到这样的主板,首先将鼓包漏液的电容进行更换,更换的耐压值可以大一点,容量可以误差不超过20%。场效应管击穿,用万用表打在蜂鸣档上就可以判断出是哪个场效应管击穿。通过测ATX电源的接口对地数值也可以判断出来是5V不是12V击穿根据电容的特征去修。一般CPU主供电电路所有与之相关电路都设置在CPU插座附近。不会在主板上的任何地方设置它的主供电电路。
电压识别管脚,也就是说CPU需要量多大的电压,需要多大的电流。如P3的CPU需要的电压稍高,P4CPU需要的电压比较低,针对不同频率的CPU需要的电压也是一样的,所以这个主板CPU需要多大的电压必需要将自己的信息告诉电源管理芯片,电源管理芯片经过内部编程之后,输出CPU所需要正确电压。 CPU供电电路图
电源管理芯片,主要和CPU主供电电路有关,与其它任何一个电路都是没有关系的。电压识别管脚VID0—VID4,还有12V、5V,12V所指的就是黄色12V,5V指的是红色5V,CPU主供电电路中只有红色线,还有橙色线与CPU主供电电路有关系。场效应管符号Q1、Q2它的电路符号是这样的。整个工作流程:当我们在主板上插上CPU后,它通过一个特定的线路CPU将自己需要的电压信息传给电源管理芯片,电源管理芯片在供电正常的情况下输出两组控制信
号,这个电路是受脉冲宽度调制电路,电源管理芯片在此控制极输出两个方波信号,它可以控制外围这组场效应管轮流导通轮流工作。这时它输出的控制信号,控制节有个控制电压,那它的输入极在正常时也有个电压,这时它输出电压是使场效应管导通,在电路基础上讲过场效应管它是一个电压性开关。控制节有个电压,输入节有个电压,场效应管正处于导通状态,导通以后输出一个电压经过电感,电感滤波储存以后电容滤波为CPU进行供电。场效应管是属于轮流导通、工作。那下面的场效应管是这时是处于截止状态,当是正弦波的时候,上面导通,下面截止,当处于负脉冲的时候,控制电压是个低电频,输入极电压是高电频,上面Q1属于截止状态,Q2属于导通状态,怎么进行工作呢?电感具滤波储能的作用,当Q1属于截止状态的时候它内部存储的电容经过CPU消耗以后经过Q2形成一个回路,Q2在这个位置主要起到一个储留和保护的作用。往往它这个特定的作用决定它不是一个容易受损坏的一个元件,当这个电网的电流或电压,也就是说浪用电流增大,最容易烧坏我们的场效应管,这就是它的一个整体的工作流程。这是多项供电中的供电中的单项原理,像现在的CPU供电电路,一般是三对场效应管,这属于多项工作原理,三组供电,在现在一般的CPU工作功率达到了80瓦,所需要的电流是非常大的。这时为CPU能在高频大电流下稳定的运行,稳定的工作,必需采用多项供电,那这就是多项供电中的单项工作原理。在以后遇到主板,检修CPU主供电电路的时候,同样只要会单项中的原理,多项供电检修原理是一样的。看此图给大家模拟故障,在主板插上CPU以后,测示卡显示的是FF00,那就证明CPU没有工作,CPU没有工作,第一个检查的就是它的工作条件——供电。主板上的所有设备,要想保证其工作稳定或工作正常,首要问题就是它的动力源也就是供电源必需,其次时钟也就是芯脉跳动必需正常,检修它的复位是否正常。根据此图在每一个位置都有可以测到,很明显在Q1X极,场效应管的X极就可以测定供电是是否正常。将万用表打在直流20V档上,无论哪个表笔接地都有无所谓,一支表笔接地,一支表笔点测试点Q2的X极或者说点Q1的X极;或者点Q1的地极Q2的地极,即可判断出供电电压是否正常。那哪个才是Q1哪个才是Q2?Q1X极地极接的是红色5V或者12V,这时将万用表打在蜂鸣档上,一支表笔放在ATX电源的黄色12V里面,另一支去连接Q1的地极,点哪个地极,响有蜂鸣声哪个就是Q1。那Q2不容易找到,当我们确定Q1以后,那在Q2只要点中Q1X极,红表笔点入X极,黑表笔在它旁边找跟Q2的地极哪个相连或蜂鸣,
那就可以确定出它的单组供电,确定出一项供电。
电源插座,为主板各各元器件进行供电的一个插座,早期用的是AT电源,它是12针,现在我们用的都有20针的,ATX电源,能通过远程进行定时起动关闭的电脑,如果用的是P4CPU中央处理器 Intel针对CPU在功耗方面量大的特点,在发部支出就规定了新的电源规范,ATX的电源随之提高了一个档次,ATX2.03的电源规范增加了4P和6P插头,4P插座就是辅助供电,用这种规范的电源将合系统更加稳定。ATX主要认识几个供电线,这个供电线是对我们维修是非常重要的,以后在维修到的常用用到对地打组织的方法来判断其电源的好坏,定位闸左上第一针第二针,左下第一针第三针为橙色线3。3V,用万用表的两个表笔打要风鸣档上,同时两个针插在三个座里边和二个座里边都会有蜂鸣声,左下角第四针,这是一个绿线(开机线)高电频不开机,低电频开机,绿线对我们的维修是非常重要的,学习电路基础,主板上的高电频就是2.5V以上,低电频在0.7V和0.8V的电压,还有右上排的第一针,它是黄色线12V,第二针紫线它是紫5V,也叫待机线,在主板没有加电之前就已存在5V的供电了,灰线也叫抛 线,也叫PG信号线它与复位电路有关,还有右下排的最右边第一针和第二针就是红色5V,怎么判断主板供电线上的好坏,到底是哪个供电出现了问题,那就用到对地打阻值,主板上的地线,主板上的地线就是上螺丝的地方,和接口上搭铁皮的地方这都是主板的地线。主板维修和显示器维修有所不同,显示器一般都是红表笔测试点,黑表笔点地,主板是红表笔点地,黑表笔点测试点,比如说5V出现短路了,首先将红表笔点地,黑表笔放在红5V里面,这时它的正常阻值应该是380左右,而绿线阻值应该是600至无穷大,最小值不能低于75,橙色线对地阻值300至无穷大,打在风鸣档上,它的最小值不小于100。黄色线的对地阻值是600到无穷大,最低不低于300,还有紫线对地阻值是的正常值600至无穷大,最低不低于300,灰线
正
常
值
是
600
至
无
穷
大
,
最
低
不
低
于
30 0 各种插槽第一个AGP插槽,也叫图形加速端口,也是专为AGP显卡提
供了一个插座,AGP为是Intel公司配合P2CPU开发的一个总线标准,它的控制器一般是集成在北桥内部的,AGP总线速度有一点零规范的制定,分为1束、2束,针对不同的AGP插槽的供电是不同的,AGP1束3.3V,两束是2.5V,4束的是1.5V,8束的是0.8V。 PCI插槽,也叫外部设备互联插槽,可插PCI显卡、声卡、网卡等, 第六个,软驱口一般是用得非常少(略)。 IDE接口,连接硬盘,就是光驱数据线的接口。
内存插槽,靠近CPU座附近,内存插槽是安装内存条,不同的内存条用的内存插槽也是不一样的,如SD内存使用的是168线的接口,DDR内存它用的是184线的一个接口,中间只有一个隔断。
BIOS芯片,它是一个基本输入输出系统,是被固化在电脑中的一组程序。
第一个是上电自检,电脑在开启的一瞬间它自动检测主板上的一些关键设备,运行是否良好。第二个中断访问程序,比如和CPU、南北桥和哪些I/O设备内存接口进行数据交换的时候,它提供一个命令,比如和北桥芯片和显卡进行数据交换,这时候它就会发出一个中断信号或者请求信号,要和它不进行数据交换的时候就会发出一个中断信号。 第三个系统自举
第四个CMOS设置程序,设置能进入设置画面以后,它设置和保存的结果都保存在南桥内部了,这组设置程序却在BIOS芯片里面,常见的BIOS芯片生产厂家有华帮、SST、(飞尼可史)。键盘鼠标口(也叫PS TO)口。
第五个串口,烫口(也叫串行接口),连接烫口鼠标、键盘、外出的MODEM,主板上有时有两个,还有并口,它是连接打印机的接口,微机接口,如果主板上集成显卡的了它就会有相对应的一个显卡接口,通过数据线直接显示器相连。
USB接口,这是连接USB接口的设备,如USB的鼠标、键盘、打印机,只要支持USB接口的都可以使用USB接口。
网卡接口,主板集成了一个网络功能,网卡接口主要是用来连接网线,实现显卡功能,主板芯片集成网卡功能才有此接口。
声卡接口,连接音箱的声音输入口,声音输出口,接麦克风的一个输入口。
主板芯片级维修必需认识的芯片和各各元器件 第一个 电源管理芯片
主板上电源管理芯片,它分部得非常有规律,一般都有是靠近CPU插座,或在CPU插座附近的,CPU的插座旁边看不到别的芯片了,看到只有一些什么供电管或电感,电源管理芯片体积非常小有14脚。电源管理芯片的型号是非常多的,那它的主要作用是干什么的呢?它就是应用CPU供电电路主板中易损的元件,它的位置在一般CPU插座的附近。一般常见的型号有:AMS34063,US3004,KA5700B,RT9238、9237,HIP6021、6026。 第二个 I/O芯片
I/O故名思意,它是管理I/O设备的,主板上称为I/O设备的都有哪此呢?像在插槽上的AGP,AGP卡,PCI卡,IS卡,NM卡 。I/O芯片在主板上是一个比较特别的一个芯片,一般它四面引脚,挨得非常紧,一般我们常见到的是IT,华帮两厂家生产的,目前比较常见到的:W83627、83977、87IT、8705、IT8712、8702、8703这此常见到的I/O芯片,它也是我们维修主板上的一损件。它损坏以后表面会鼓起一个小包。另外一种,在电子电路的集成电路中有一个特征,它正常的工作的情况下有一个恒温,它特别热,说明它内部短路;特别冷说明它内部开路,它正常供电阻值是对地380Ω左右,一般它的供电脚都是有一些比较粗的线,还有旁边接滤波电容的,一般这些都有是它的供电脚。测量它的好坏,一是用手触摸它的温度,二是通过目测,三是通过打它的阻值来判断此芯片的好坏。 第三个 串口芯片
它是管理串口设备的。有的主板有两串口芯片,有的是一个串口。常用到的串口芯片的有:GD75232、GD75185。串口芯片,如P4主板有两个串口,同时主板也有两个串口芯片,每一个芯片管理一个串口,它也是主板上的一个易损元件,损坏以后也是表面鼓包,这是最常见的。对主板进行维修的时候应先清理主板上的灰尘,这样便于目测。很多情况下少走一些歪路,在目测的时候就发现主板的一些问题。修主板先目测。 第四个 声卡芯片
它也是四面引脚的,声卡芯片在主板上是非常小的一个芯片,只要主板上有声卡接口一般都有
会有声卡芯片。板载声卡一般有软声卡,硬声卡之分。是指是否有主处理芯片之分,一般软声卡没有主处理芯片,只有解码芯片,通过CPU运算代替声卡主处理芯片的作用,板载的硬声卡带有主处理芯片,很多音效处理工作就不需要CPU参与,大大提高CPU工作性能,常见的型号:ALC601、101,ALC655、CMI9739A、CMI8738、VIA1616等这是常见的声卡芯片。一般损坏后将它折掉。一般都会出现杂音,无声这种现实,一般都是它旁边的滤波电容滤波不了,在它的旁边滤波电容(以C表示的)这些贴片小的滤波电容损坏,漏电,变质引起来了,小滤波电容损坏以后,可以直接将芯片折掉不用,用一个独立声卡来代替。 第五个 监控芯片
监控芯片在Intel芯片组是比较常见的,它主要是用监控CPU的温度,风扇的转数,CPU的工作电压起着一个监控的作用。常见的监控芯片一般它也是在CPU座的附近,像Intel芯片组监控芯片都是非常常见,上462的主板一般也有监控芯片,监控芯片一般都分部在CPU插槽旁边,但也有些没有。它和主供电是关联关系,一般损坏后可以将它折掉不用,把监控芯片折掉后,它就会映响CPU的工作,那CPU就不工作,这时测试示卡显示的FF00。注意以后看到带有监控芯片的情况下,CPU测试示卡显示FF00,这时一定要想到监控器芯片是个易损件,损坏后折掉就可以了!
还有S-AT串行接口芯片,这个是南桥通过此芯片来管理硬盘的,常见型号有:威T6420、20378串行接口芯片,现在的高档一点的主板都支持串行接口的硬盘,串行接口硬盘旁边就有一个不知名的芯片,这时应该想到常见的这两个型号,一般都是串行接口芯片,当 硬盘的时候排除电路方面故障,还有含本身故障以外一定要看清楚 接口芯片,这个也是主板一个易损元件。
开机复位芯片
开机复位芯片,它是华硕特有的一个芯片,南桥内部集成一个电源管理系统和一个复位系统,华硕主板这两大功能便由开机复位芯片来实现,华硕主板用开机复位芯片,而不用南桥来实现,这正是华硕主板的不同之处,电源或复位系统损坏以后针对别的主板来说就意味着它们的南桥报废了,若别的主板修到南北桥就没有维修的价值,但华硕主板它损坏只要电源管理系统和复位系统它直接更换芯片就可以了。
第六个 特殊元器件
是要在维修主板可能会碰到的特殊元器件,像比焦放大器,正电压稳压器。比较放大器LL358、393、324。正电压稳压器(电压转换开关)117、1084。作为维修会判断元器件的好坏和代换原则这是至关重要的。记住特殊元器件的输入角,输出角还有调整角,一般它损坏表面现象也可以看出来,有的有小亮点,或烧出个小洞,这些都可以直观的看出来。还有观察不出来的情况,那我们知道输入输出角就直接用万用表打在直流20档上,直接测它的输入输出角的电压,如果输入输出角电压正常那就可以判断此芯片没有问题了,如果是输入角没有电压,那就找一下特殊元器件,输入角的后级电路了。 第七个 主板的时钟发生器
时钟发生器是由时钟芯片和一个14.318MHZ的晶振共同组成。它共同组成一个时钟发生器经过内部升频降频以后,为主板上的所有的设备提供了一个工作频率,就是一个提供芯脉跳动,我们可以形象的将主板上的所有设备比喻为5个工作人员,这些工作人员要想正常工作就必需有个动力源,也就是芯脉跳动。如果把CPU比喻为人的大脑,那时钟发生器就是整块主板的心脏,如果心脏(时钟发生器)停止跳动,那主板就会停止工作,可见它的重要性。时钟发生器非常有规律,时钟发生器和14。318的晶振连在一起,共同组成一个时钟发生器,主板加电以后通过它们内部将时钟信号送往CPU、北桥、内存、南桥、AP插槽,IS插槽、PCI插槽、KMA插槽、硬盘,将这些芯脉跳动送给它们。常见的这个时钟芯片CSC这是个最常见的时钟芯片。
那像这个主板它属于三相供电,在主板中多项供电也主是单项供电的并联,为了增大电流采取了并联关系,现在多数主板的供电电路都采用了两项电路,或多项设计,用力满足CPU高功耗的需求,使功率达到80瓦,工作电流达到50A,采用多项供电不仅可以为CPU提供足够可靠的电能,还可通过分流的使作用使每项场效应管的负载减少,为主板的稳定运行创造一个良好的工作环境,三项供电电路采用Intel公司一个特定的工作模式。
怎么样才能找到CPU供电电路中的电源管理芯片?只要确定出一项供电以后,用万用表打在蜂鸣档上,一支表笔接差场效应管Q1控制极,另一支表笔和旁边的芯片去连接一下,连、通以后即可知道它是不是电源管理芯片。找到电源管理芯片,就不用找电压识别管脚。
怎么样检修CPU供电不正常,当测试卡显示FF00的时候,测它的供电是否正常,测Q1、Q2的地极一测不正常。Q1的输入的供电是否正常,Q1控制一无电压而输入极没有电压,场效应管就没有电压往后极输出。那CPU供电电路也没有供电,所以必需是先检Q1的地极供电输入是否正常,如果地极输入电压不正常,它的供电脚一般都是5V或12V,5V或12V与Q1地极相连的线路看是否有损坏的无器件,一般都有是连接一些电容鼓包,引起来的没有供电,也就是说直接将电压对地了。Q1地极输入地极电压正常,这时供电还是没有,这时就应该查Q1的控制极电压。控制电压由电源管理芯片来控制,控制电压有时会接一下保险,或0欧姆的小电阻,起到一个保险的作用。一旦电源管理芯片老化不受控的时候,将要先要熔断的是与地极相连的保险和0欧姆的电阻,起到一个保护后极电路的一个作用,所以以后在找CPU供电电路中,单项供电的控制电压不正常的时候一不能忽视控制极所接的保险。控制极电压正常,输入极电压正常,这时CPU供电电压不正常,那就是Q1内部开路所造成的,那查Q1的 极还有Q2的 极供电都没有这时候,该查什么地方呢?这时大家会说是电源管理芯片坏了,回答这是错误的,这时应该查看电源管理芯片供电是否正常,只有供电正常的情况下电源管理芯片才会正常的工作。电源管理芯片的供电是由谁供己,是由黄色12V,经过电感电容滤波以后对它进行供电的,通过用万用表打在蜂鸣档上,查电源管理芯片的供电脚,查它供电正常,这时它没有输出控制极供电电压Q2的控制电压,这时还不可以判断电源管理芯片已经损坏,DAI电压识别管脚信息,还没有正确的把信息告诉电源管理芯片有时不工作,有时不正常,这时应该查一上CPU座虚焊,还有CPU本身是否正常,相关的检修思路。这就是CPU供电电路,多项供电的单项原理。 CPU主供电的检修流程图
注:常坏是电源控制芯片和场效应管以及R1限渡电阻,一般CPU供电中15V,主供电会无输出时,电源控制芯片坏的可能性最,如果具有基某中一项输出不正常,则是输出此项的场效应管坏的最多(如Q3的1.5V输出)。
由于主供电电路中的采用的是多项并联的关系,它每单项的供电,单项场效应管损坏,都会导致整个CPU供电电路的不稳定。所以要检修中不要盲目的去折看供电电路中的场效应管,可
用断路法来排除,首先将场效管断开一组,然后再判断其好坏这个就是CPU主供电电路的检修流程。这就是整个CPU供电电路的检修流程。 主板的时钟电路
主板的时钟电路大多是由时钟发生器提供的,14.318MHZ的一个晶振和时钟芯片共同组成一个时钟发生器,通过它们内部的升平,降平之后为主板上的所有设备,如CPU,内存,北桥,AGP,PCI设备,南桥,硬盘,USB口总之为需要工作频率的设备提供一个工作时钟,为什么说经过内部升平,降平之后为主板上和各各设备提供一个工作频率呢?常见到的CPU工作频率66/100/133外频,现在还有更高的。主板上的内存时钟是66/100/133/266/400,现在还有更高。标准的AGP插槽工作频率是66MHz,现在还有更高。像PCI插槽PCI设备的工作频率是33MHz,这些设备所需要的频率都是由时钟发生器提供的,时钟发生器的工作原理是怎么的呢?它是在什么情况下才能正常工作呢?是在两组供电的情况下,其自身没有问题的情况下就是正常工作。时钟发生器的供电是3.3V,还有2.5V、3.3V经过一个电感直接与时钟的IC相连,2.5经过一个电感与时钟IC相连,任何设备要想正常工作,首先要有个动力源,动力源是由不同电压提供的,电源3.3V或2.5V进入这个时钟发生器(分平器)以后,分平器开始工作,与14.318的晶振一起产生振荡,晶体两脚各有1V左右的电压,它正常工作以后,晶振两个引脚之间每个都有1V左右的工作电压,用万用表无法在上面检测,(对涵授学员)一般应该测时钟晶振底部的两个引脚电压。(对在校的学生)直接测时钟晶振两个协振电容,一般在主板上用“C”来表示,它和时钟晶振是相连的。跑电路只要将万用表打在蜂鸣档上,即可找见晶振旁边的协振电容,而且时钟电路设计是很有规律的了,一般协振电容就在14.318的晶振旁边。找出没有接地的那个端,若接地的那一个端是测不出电压的。测没有接地的那端电压是不是非曲直1V。由分平器提供晶体两脚长升的频率,它长升频率的总和是14.318MHz,也就是总频OSC,在总分平器出来以后送到PCI插槽,送到南桥、北桥等。 整体时钟电路的工作过程
3.3V经过一个电感送往时钟芯片,2.5V经过一个电感送往时钟芯片。2.5V和3.3V是怎么产生的,一般3.3V是由ATX电源上橙色线的3。3V直接提供的,2.5V也是由3.3V经过一些特殊元器件、正电压稳压器,经过门电路,场效应管,二级管压等得来的这2.5。在一些主板上有
两组供电,但在特殊的主板上时钟发生器只有一组供电,当它供电正常的情况下,在晶振的正常的情况下内部开始工作,工作以后,产生出来的工作频率,经过外围,也就是时钟芯片小电阻,时钟芯片外围的小电阻220、330、0欧姆的小电阻一般都有分部得很有规律,就在时钟发生器的旁边。这个分出来频率,用示波器测出来的是最明显的方波信号。若用万用表测量出来的是1.75V电压,测220和测没有跟时钟相连的电压1.75V、1.65V的电压,经过就送往各各测点。比如送到CPU底座下的时钟测试点,内存插槽底部的时钟测试点,AGP插槽,PCI插槽等等。这个就是整个时钟电路的一个工作原理,它是一个容易损坏的一个电阻。在主板中最容易损坏的一个就是电路就是开机电路,CPU主供电电路。
在一些主板上它有两个时钟芯片,P4主板一般都有两个时钟芯片,一个是和14。318相连的晶振;一个是在内存插槽附近。为什么有一个独立时钟芯片,又有一个总的时钟芯片呢?独立时钟芯片它专为内存和南桥提供时钟的,当这个时钟发生器所提供的频率满足设备的工作频率的时候,就由这个独立的时钟芯片来提供为其工作的时钟频率,独立主时钟芯片的供电频率也是3。3V和2。5V,但凡事都有例外,比较特殊的一些时钟芯片,它的供电只有一组,要么3。3V要么2。5V。
因篇幅问题不能全部显示,请点此查看更多更全内容