数轴
教学目标
1、掌握数轴的概念,理解数轴上的点和有理数的对应关系;
2、会正确地画出数轴,会用数轴上的点表示给定的有理数,会根据数轴上的点读出所表示的有理数;
3、感受在特定的条件下数与形是可以相互转化的,体验生活中的数学。 教学难点 数轴的概念和用数轴上的点表示有理数 知识重点
教学过程(师生活动) 设计理念 设置情境 引入课题 教师通过实例、课件演示得到温度计读数. 问题1:温度计是我们日常生活中用来测量温度的重要工具,你会读温度计吗?请你尝试读出图中三个温度计所表示的温度?
(多媒体出示3幅图,三个温度分别为零上、零度和零下)
问题2:在一条东西向的马路上,有一个汽车站,汽车站东3 m和7.5m处分别有一棵柳树和一棵杨树,汽车站西3 m和4.8m处分别有一棵槐树和一根电线杆,试画图表示这一情境. (小组讨论,交流合作,动手操作) 创设问题情境,激发学生的学习热情,发现生活中的数学
点表示数的感性认识。
点表示数的理性认识。 合作交流 探究新知 教师:由上述两问题我们得到什么启发?你能用一条直线上的点表示有理数吗?
让学生在讨论的基础上动手操作,在操作的基础上归纳出:可以表示有理数的直线必须满足什么条件?
从而得出数轴的三要素:原点、正方向、单位长度 体验数形结合思想;只描述数轴特征即可,不用特别强调数轴三要求。
从游戏中学数学 做游戏:教师准备一根绳子,请8个同学走上来,把位置调整为等距离,规定第4个同学为原点,由西向东为正方向,每个同学都有一个整数编号,请大家记住,现在请第一排的同学依次发出口令,口令为数字时,该数对应的同学要回答“到”;口令为该同学的名字时,该同学要报出他对应的“数字”,如果规定第3个同学为原点,游戏还能进行吗? 学生游戏体验,对数轴概念的理解 寻找规律 归纳结论 问题3:
1、你能举出一些在现实生活中用直线表示数的实际例子吗?
2、 如果给你一些数,你能相应地在数轴上找出它们的准确位置吗?如果给你数轴上的点,你能读出它所表示的数吗?
3、哪些数在原点的左边,哪些数在原点的右边,由此你会发现什么规律? 4、每个数到原点的距离是多少?由此你会发现了什么规律? (小组讨论,交流归纳)
归纳出一般结论,教科书第12的归纳。 这些问题是本节课要求学会的技能,教学中要以学生探究学习为主来完成,教师可结合教科书给学生适当指导。 巩固练习 教科书第12页练习 小结与作业 课堂小结 请学生总结: 1、数轴的三个要素;
2、数轴的作以及数与点的转化方法。
本课作业 1、必做题:教科书第18页习题1.2第2题 2、选做题:教师自行安排
课题: 绝对值
教学目标
1、掌握绝对值的概念,有理数大小比较法则.
2、学会绝对值的计算,会比较两个或多个有理数的大小.
3、体验数学的概念、法则来自于实际生活,渗透数形结合和分类思想. 教学难点 两个负数大小的比较 知识重点 绝对值的概念 教学过程(师生活动) 设计理念 设置情境 引入课题 星期天黄老师从学校出发,开车去游玩,她先向东行20千米,到朱家尖,下午她又向西行30千米,回到家中(学校、朱家尖、家在同一直线上),如果规定向东为正,①用有理数表示黄老师两次所行的路程;②如果汽车每公里耗油0.15升,计算这天汽车共耗油多少升?
学生思考后,教师作如下说明:
实际生活中有些问题只关注量的具体值,而与相反
意义无关,即正负性无关,如汽车的耗油量我们只关心汽车行驶的距离和汽油的价格,而与行驶的方向无关;
观察并思考:画一条数轴,原点表示学校,在数轴上画出表示朱家尖和黄老师家的点,观察图形,说出朱家尖黄老师家与学校的距离. 学生回答后,教师说明如下:
数轴上表示数的点到原点的距离只与这个点离开原点的长度有关,而与它所表示的数的正负性无关;
例如,上面的问题中|20|=20,|-10|=10显然,|0|=0 这个例子中,第一问是相反意义的量,用正负数表示,后一问的解答则与符号没有关系,说明实际生活中有些问题,人们只需知道它们的具体数值,而并不关注它们所表示的意义.为引入绝对值概念做准备.并使学生体验数学知识与生活实际的联系.
因为绝对值概念的几何意义是数形转化的典型
模型,学生初次接触较难接受,所以配置此观察与思考,为建立绝对值概念作准备. 合作交流 探究规律
例1求下列各数的绝对值,并归纳求有理数a的绝对 有什么规律?、
-3,5,0,+58,0.6 要求小组讨论,合作学习.
教师引导学生利用绝对值的意义先求出答案,然后观察原数与它的绝对值这两个数据的特征,并结合相反数的意义,最后总结得出求绝对值法则(见教科书第15页). 巩固练习:教科书第15页练习. 其中第1题按法则直接写出答案,是求绝对值的基本训练;第2题是对相反数和绝对值概念进行辨别,对学生的分析、判断能力有较高要求,要注意思考的周密性,要让学生体会出不同说法之间的区别. 求一个数的绝时值的法则,可看做是绝对值概 念的一个应用,所以安排此例.
学生能做的尽量让学生完成,教师在教学过程中只是组织者.本着这个理念,设计这个
讨论.
结合实际发现新知 引导学生看教科书的图,并回答相关问题: 把14个气温从低到高排列;
把这14个数用数轴上的点表示出来;
观察并思考:观察这些点在数轴上的位置,并思考它们与温度的高低之间的关系,由此你觉得两个有理数可以比较大小吗? 应怎样比较两个数的大小呢? 学生交流后,教师总结:
14个数从左到右的顺序就是温度从低到高的顺序: 在数轴上表示有理数,它们从左到右的顺序就是从小到大的顺序,即左边的数小于右边的数. 在上面14个数中,选两个数比较,再选两个数试试,通过比较,归纳得出有理数大小比较法则
想象练习:想象头脑中有一条数轴,其上有两个点,分别表示数一100和一90,体会这两个点到原点的距离(即它们的绝对值)以及这两个数的大小之间的关系. 要求学生在头脑中有清晰的图形. 让学生体会到数学的规定都来源于生活,每一种规定都有它的合理性。数在大小比较法则第2点学生较难掌握,要从绝对值的意义和数轴上的数左小右大这方面结合起来来了解,所以配置想象练习 ,加强数与形的想象。 课堂练习
例2、比较下列各数的大小(教科书第17页例)比较大小的过程要紧扣法则进行,注意书写格式练习:第18页练习 小结与作业 课堂小结 怎样求一个数的绝对值,怎样比较有理数的大小? 本课作业 1、 必做题:教产书第19页习题1,2,第4,5,6,10 2、 选做题:教师自行安排
本课教育评注(课堂设计理念,实际教学效果及改进设想)
1、情景的创设出于如下考虑:①体现数学知识与生活实际的紧密联系,让学生在这些熟悉的日常生活情境中获得数学体验,不仅加深对绝对值的理解,更感受到学习绝对值概念的必要性和激发学习的兴趣.②教材中数的绝对值概念是根据几何意义来定义的(其本质是将数转化为形来解释,是难点),然后通过练习归纳出求有理数的绝对值的规律,如果直接给出绝对值的概念,灌输知识的味道很浓,且太抽象,学生不易接受.
2、 一个数绝对值的法则,实际上是绝对值概念的直接应用,也体现着分类的数学思想,所以直接通过例1归纳得出,显得非常紧凑,是教学重点;从知识的发展和学生的能力培养角度来看,教师应更重视学生的自主学习和探究的过程,关注学生的思维,做好教学的组织和引导,留给学生足够的空间。
3、 有理数大小的比较法则是大小规定的直接归纳,其中第(2)条学生较难理解,教学中要结合绝对值的意义和规定:“在数轴上表示有理数,它们从左到右的顺序就是从小到大的顺序”,帮助学生建立“数轴上越左边的点到原点的距离越大,所以表示的数越小”这个数形结合的模型.为此设置了想象练习.
4、本节课的内容包括绝对值的概念和数的绝对值的求法、有理数大小比较的法则,教学内容很多,学生接受起来可能会有困难,建议把有理数的大小比较移到下节课教学。
2.1 整式
§ 2.1整式(单项式)
教学目标:
知识与技能:
1.理解单项式及单项式系数、次数的概念。 2.会准确迅速地确定一个单项式的系数和次数。
3.初步培养学生观察、分析、抽象、概括等思维能力和应用意识。 过程与方法:
通过小组讨论、合作学习等方式,经历概念的形成过程,培养学生自主探索知识和合作交流能力。
分层次教学,讲授、练习相结合。 情感、态度、价值观:
培养学生观察、归纳、概括及运算能力 教学重点:
掌握单项式及单项式的系数、次数的概念,并会准确迅速地确定一个单项式的系数和次数。
教学难点:单项式概念的建立。
教学过程:
一、复习引入:
1、列代数式
(1)若正方形的边长为a,则正方形的面积是 ;
(2)若三角形一边长为a,并且这边上的高为h,则这个三角形的面积为 ;
(3)若x表示正方形棱长,则正方形的体积是 ; (4)若m表示一个有理数,则它的相反数是 ;
(5)小明从每月的零花钱中贮存x元钱捐给希望工程,一年下来小明捐款 元。
(让学生列代数式不仅复习前面的知识,更是为下面给出单项式埋下伏笔,同时使学生受到较好的思想品德教育。)
2、请学生说出所列代数式的意义。
3、请学生观察所列代数式包含哪些运算,有何共同运算特征。 由小组讨论后,经小组推荐人员回答,教师适当点拨。
(充分让学生自己观察、自己发现、自己描述,进行自主学习和合作交流,可极大的激发学生学习的积极性和主动性,满足学生的表现欲和探究欲,使学生学得轻松愉快,充分体现课堂教学的开放性。)
二、讲授新课:
1.单项式:
通过特征的描述,引导学生概括单项式的概念,从而引入课题:单项式,并
板书归纳得出的单项式的概念,即由数与字母的乘积组成的代数式称为单项式。
2.练习:判断下列各代数式哪些是单项式? x1(1); (2)abc; (3)b2; (4)-5ab2; (5)y; (6)-xy2; (7)-5。
2(加强学生对不同形式的单项式的直观认识,同时利用练习中的单项式转入单项式的系数和次数的教学)
3.单项式系数和次数:
直接引导学生进一步观察单项式结构,总结出单项式是由数字因数和字母因
1数两部分组成的。以四个单项式a2h,2πr,abc,-m为例,让学生说出它们
3的数字因数是什么,从而引入单项式系数的概念并板书,接着让学生说出以上几个单项式的字母因数是什么,各字母指数分别是多少,从而引入单项式次数的概念并板书。
4.例题:
例1:判断下列各代数式是否是单项式。如不是,请说明理由;如是,请指出它的系数和次数。
232
①x+1; ②1; ③πr; ④-ab。 2x答:①不是,因为原代数式中出现了加法运算;②不是,因为原代数式是1与x的商;
3③是,它的系数是π,次数是2; ④是,它的系数是-,次数
2是3。
例2:下面各题的判断是否正确? ①-7xy2的系数是7;②-x2y3与x3没有系数;③-ab3c2的次数是0+3+2;
21④-a3的系数是-1; ⑤-32x2y3的次数是7; ⑥1πrh的系数是。 33
5.游戏:
规则:一个小组学生说出一个单项式,然后指定另一个小组的学生回答他的系数和次数;然后交换,看两小组哪一组回答得快而准。
6.课堂练习:课本p56:1,2。 三、课堂小结:
①单项式及单项式的系数、次数。
②根据教学过程反馈的信息对出现的问题有针对性地进行小结。
③通过判断一个单项式的系数、次数,培养学生理解运用新知识的能力,已达到本节课的教学目的。 四、作业设计
课本p59:1,2。
2.2整式的加减(同类项)
教学目标:
知识与技能:
1.理解同类项的概念,在具体情景中,认识同类项。
2.通过小组讨论、合作学习等方式,经历概念的形成过程,培养学生自主
探索知识和合作交流的能力。
过程与方法:
分层次教学,讲授、练习相结合。 情感、态度、价值观:
初步体会数学与人类生活的密切联系。 教学重点:理解同类项的概念
教学难点:根据同类项的概念在多项式中找同类项 教学过程:
一、复习引入:
1、创设问题情境
⑴、5个人+8个人= ⑵、5只羊+8只羊= ⑶、5个人+8只羊=
2、观察下列各单项式,把你认为相同类型的式子归为一类。 8x2y,-mn2, 5a,-x2y, 7mn2,
38, 9a,-
xy232
,0,0.4mn2,5,2xy。 9由学生小组讨论后,按不同标准进行多种分类,教师巡视后把不同的分类方
法投影显示。
要求学生观察归为一类的式子,思考它们有什么共同的特征?
请学生说出各自的分类标准,并且肯定每一位学生按不同标准进行的分类。 二、讲授新课:
1.同类项的定义:
我们常常把具有相同特征的事物归为一类。8x2y与-x2y可以归为一类,2xy2与-
xy23可以归为一类,-mn2、7mn2与0.4mn2可以归为一类,5a与9a可以归
223为一类,还有8、0与5也可以归为一类。8xy与-xy只有系数不同,各自所含9的字母都是x、y,并且x的指数都是2,y的指数都是1;同样地,2xy2与-xy23也只有系数不同,各自所含的字母都是x、y,并且x的指数都是1,y的指数都是2。
像这样,所含字母相同,并且相同字母的指数也分别相等的项叫做同类项。另外,所有的常数项都是同类项。
板书由学生归纳总结得出的同类项概念以及所有的常数项都是同类项。
2.例题:
例1:判断下列说法是否正确,正确地在括号内打“√”,错误的打“×”。 (1)3x与3mx是同类项。 ( ) (2)2ab与-5ab是同类项。 ( )
222
(3)3x2y与-1yx是同类项。 ( ) (4)5ab与-2abc是同类项。 ( ) 3(5)23与32是同类项。 ( ) 例2:游戏:
规则:一学生说出一个单项式后,指定一位同学回答它的两个同类项。 要求出题同学尽可能使自己的题目与众不同。
可请回答正确的同学向大家介绍写一个单项式同类项的经验,从而揭示同类项的本质特征,透彻理解同类项的概念。
例3:指出下列多项式中的同类项:
223(1)3x-2y+1+3y-2x-5; (2)3x2y-2xy2+1xy-yx。 23解:(1)3x与-2x是同类项,-2y与3y是同类项,1与-5是同类项。
2221(2)3x2y与-3yx是同类项,-2xy与xy是同类项。 23例4:k取何值时,3xky与-x2y是同类项?
解:要使3xky与-x2y是同类项,这两项中x的次数必须相等,即 k=2。所以当k=2时,3xky与-x2y是同类项。
例5:若把(s+t)、(s-t)分别看作一个整体,指出下面式子中的同类项。
2131(1)1(s+t)-(s-t)-(s+t)+(s-t); (2)2(s-t)+3(s-t)-5(s-t)-8(s4635-t)2+s-t。 解:略。
6.课堂练习:请写出2ab2c3的一个同类项.你能写出多少个?它本身是自己的同类项吗?
(学生先在课本上解答,再回答,若有错误请其他同学及时纠正。) 三、课堂小结:
①理解同类项的概念,会在多项式中找出同类项,会写出一个单项式的同类项,会判断同类项。
②这堂课运用到分类思想和整体思想等数学思想方法。
③学习同类项的用途是为了简化多项式,为下一课的合并同类项打下基础。 四、作业设计
§ 2.2整式的加减(三)——去括号
教学目标: 知识与技能:
能运用运算律探究去括号法则,并且利用去括号法则将整式化简. 过程与方法:
经历类比带有括号的有理数的运算,发现去括号时的符号变化的规律,归纳出去括号法则,培养学生观察、分析、归纳能力. 情感、态度、价值观:
培养学生主动探究、合作交流的意识,严谨治学的学习态度. 教学重点:去括号法则,准确应用法则将整式化简.
教学难点:括号前面是“-”号去括号时,括号内各项变号容易产生错误 教学过程:
一、新授
利用合并同类项可以把一个多项式化简,在实际问题中,往往列出的式子含有括号,那么该怎样化简呢?
现在我们来看本章引言中的问题(3):
在格尔木到拉萨路段,如果列车通过冻土地段要t小时,•那么它通过非冻土地段的时间为(t-0.5)小时,于是,冻土地段的路程为100t千米,•非冻土地段的路程为120(t-0.5)千米,因此,这段铁路全长为 100t+120(t-0.5)千米 ① 冻土地段与非冻土地段相差 100t-120(t-0.5)千米 ②
上面的式子①、②都带有括号,它们应如何化简?
思路点拨:教师引导,启发学生类比数的运算,利用分配律.学生练习、交流后,教师归纳:
利用分配律,可以去括号,合并同类项,得: 100t+120(t-0.5)=100t+120t+120×(-0.5)=220t-60 100t-120(t-0.5)=100t-120t-120×(-0.5)=-20t+60 我们知道,化简带有括号的整式,首先应先去括号. 上面两式去括号部分变形分别为:
+120(t-0.5)=+120t-60 ③ -120(t-0.5)=-120+60 ④ 比较③、④两式,你能发现去括号时符号变化的规律吗?
思路点拨:鼓励学生通过观察,试用自己的语言叙述去括号法则,然后教师板书(或用屏幕)展示:
如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;
如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反. 特别地,+(x-3)与-(x-3)可以分别看作1与-1分别乘(x-3). 利用分配律,可以将式子中的括号去掉,得:
+(x-3)=x-3 -(x-3)=-x+3
去括号规律要准确理解,去括号应对括号的每一项的符号都予考虑,做到要变都变;要不变,则谁也不变;另外,括号内原有几项去掉括号后仍有几项. 二、范例学习
例1.化简下列各式: (1)8a+2b+(5a-b); (2)(5a-3b)-3(a2-2b).
思路点拨:讲解时,先让学生判定是哪种类型的去括号,去括号后,要不要变号,括号内的每一项原来是什么符号?去括号时,要同时去掉括号前的符号.为了防止错误,题(2)中-3(a2-2b),先把3乘到括号内,然后再去括号. 解答过程按课本,可由学生口述,教师板书.
例2.两船从同一港口同时出发反向而行,甲船顺水,乙船逆水,•两船在静水中的速度都是50千米/时,水流速度是a千米/时. (1)2小时后两船相距多远?
(2)2小时后甲船比乙船多航行多少千米?
教师操作投影仪,展示例2,学生思考、小组交流,寻求解答思路.
思路点拨:根据船顺水航行的速度=船在静水中的速度+水流速度,•船逆水航行速度=船在静水中行驶速度-水流速度.因此,甲船速度为(50+a)千米/时,乙船速度为(50-a)千米/时,2小时后,甲船行程为2(50+a)千米,乙船行程为(50-a)千米.•两船从同一洪口同时出发反向而行,所以两船相距等于甲、乙两船行程之和. 解答过程按课本.
三、巩固练习
1.课本第68页练习1、2题.
2.计算:5xy2-[3xy2-(4xy2-2x2y)]+2x2y-xy2. [5xy2] 思路点拨:一般地,先去小括号,再去中括号. 四、课堂小结
去括号是代数式变形中的一种常用方法,去括号时,特别是括号前面是“-”号时,括号连同括号前面的“-”号去掉,括号里的各项都改变符号.去括号规律可以简单记为“-”变“+”不变,要变全都变.当括号前带有数字因数时,这个数字要乘以括号内的每一项,切勿漏乘某些项.
学生作总结后教师强调要求大家应熟记法则,并能根据法则进行去括号运算。法则顺口溜:去括号,看符号:是“+”号,不变号;是“―”号,全变号。
五、作业设计
课本第71页习题2.2第2、3、5、8题. 教学后记:
§ 2.2整式的加减(四)
教学目标: 知识与技能:
让学生从实际背景中去体会进行整式的加减的必要性,并能灵活运用整式的加减的步骤进行运算。 过程与方法:
培养学生的观察、分析、归纳、总结以及概括能力。 情感、态度、价值观:
认识到数学是解决实际问题和进行交流的重要工具。 教学重点:正确进行整式的加减。 教学难点:总结出整式的加减的一般步骤。 教学过程: 一、复习引入:
1.做一做。
某学生合唱团出场时第一排站了n名,从第二排起每一排都比前一排多一人,一共站了四排,则该合唱团一共有多少名学生参加?
①学生写出答案:
n+(n+1)+(n+2)+(n+3)
②提问:以上答案进一步化简吗?如何化简?我们进行了哪些运算? 2.练习:化简:
(1)(x+y)—(2x-3y) (2)2a22b3(2a2b2)
提问:以上化简实际上进行了哪些运算?怎样进行整式的加减运算? 二、讲授新课:
1.整式的加减:教师概括(引导学生归纳总结出整式的加减的步骤) 不难发现,去括号和合并同类项是整式加减的基础。
2.例题:
例1:求整式x2―7x―2与―2x2+4x―1的差。
让学生自然地认识到整式的化简实质上就是整式的加减。 2
解:( x2―7x―2)―(―2x2+4x―1)= x2―7x―2+2x2―4x+1=3x2―11x―1。 小结:本题应先列式,列式时注意给两个多项式都加上括号,后进行整式的加减。
练习:一个多项式加上―5x2―4x―3与―x2―3x,求这个多项式。 例2:计算:―2y3+(3xy2―x2y)―2(xy2―y3)。 解:原式=―2y3+3xy2―x2y―2xy2+2y3)= xy2―x2y。 先化简在求值的优越性。
3.课堂练习: 课本P70:1,2,3。 三、课堂小结:
1.整式的加减实际上就是去括号、合并同类项这两个知识的综合。 2.整式的加减的一般步骤: ①如果有括号,那么先算括号。 ②如果有同类项,则合并同类项。
3.求多项式的值,一般先将多项式化简再代入求值,使计算简便。 4.数学是解决实际问题的重要工具。
四、作业设计
课本P71—72:6,7,9。
3.1.1一元一次方程
[教学目标]理解一元一次方程的概念,会识别一元一次方程;了解方程的解,会验证方程的解;知道怎样列方程解决实际问题,感受方程作为刻画现实世界有效模型的意义。
[重点难点]一元一次方程和方程的解的概念是重点;怎样列方程解决实际问题是难点。
〔教学方法〕指导探究,合作交流
〔教学资源〕小黑板
[教学过程]
一、问题导入
含有未知数的等式叫做方程。方程把问题中的未知数与已知数的联系用等式的形式表示出来。研究问题时,要分析数量关系,用字母表示未知数,列出方程,然后求出未知数。
怎样根据问题中的数量关系列出方程?怎样解方程? 二、怎样列方程
问题 汽车匀速行驶途径王家庄、青山、秀水三地的时间如表所示,翠湖在青山、秀水两地之间,距青山50千米,距秀水70千米。王家庄到翠湖的路程有多远?
地 名 王家庄 青 山 秀 水
王家庄
x千米 时 间 10:00 13:00 15:00 50千米 70千米 青山 翠湖 秀水
1、汽车从王家庄行驶到青山用了多少时间?从青山到秀水用了多少时间? 2、请你用算术方法解决这个问题。
3、如果设王家庄到翠湖的路程为x千米,那么王家庄距青山多少千米?王家庄距秀水多少千米?
4、由于汽车是匀速行驶,可知各段路程的车速相等。你能据此列出方程吗?
列方程时,要先设字母表示未知数,然后根据问题中的相等关系,写出含未知数的等式——方程。
列方程的过程可以表示如下: 设未知数,列方程
一元一次方程 实际问题 分析实际问题中的数量关系,利用其中的相等关系列出方程,是用数学解决实际问题的一种方法。
三、一元一次方程的概念
例1 根据下列问题,设未知数并列出方程:
(1)用一根长24㎝的铁丝围成一个正方形,正方形的边长是多少?
(2)一台计算机已使用1700小时,预计每月再使用150小时,经过多少月这台计算机的使用时间达到规定的检修时间2450小时?
(3)某校女生占全体学生数的52%,比男生多80人,这个学校有多少学生? 解:(1)设正方形的边长为x厘米,可列方程4x=24 ①
(2)设x月后这台计算机的使用时间达到规定的检修时间。1700+150 x=2450 ② (3)设这个学校的学生人数为x人,那么女生人数是多少?男生人数是多少?
女生人数为0.52 x人,男生人数为(1-0.52)x人。0.52 x -(1-0.52)x=80 ③ 观察方程①②③,它们有什么共同的特点?
思考:下列式子中,哪些是一元一次方程?
①2x+3;②2×6=12;③1/2x-3=2;④1/x+3x=5;⑤y=0.
四、方程的解
列方程是解决实际问题的一种方法,利用方程可以解出未知数。 想一想:(1)x等于多少时,方程①的左右两边相等? (2)x=5能使②的左右两边相等吗?
能使方程左右两边相等的未知数的值,叫做方程的解。 思考:x=2是方程3x-1=2x+1的解吗?为什么?
五、课堂练习
课本82面1、2、3题。
六、课堂小结
1、怎样列方程?怎样解决实际问题?
解决实际问题就是把实际问题抽象成数学问题,通过解决数学问题来解决实际问题. 2、什么叫一元一次方程?
3、什么是方程的解?你怎样知道某个未知数的值是方程的解? 作业:
课本84面1、2;85面5、6、10(2)题。
3.2.2解一元一次方程——移项(2)
[教学目标]1、理解移项的概念;2、会用移项法解一元一次方程;3、经历用方程解决实际问题的过程。
[重点难点]用移项法解方程是重点;移项是难点。
〔教学方法〕指导探究,合作交流
〔教学资源〕小黑板
[教学过程]
一、问题导入
一元一次方程有这样的特点:一边是含有未知数的项,一边是常数项。这样的方程我们可以用合并同类项来解,那么像3x+7=32-2x这样的方程怎么解呢?
二、移项的概念
问题:把一些图书分给某班学生阅读,如果每人3本,则剩余20本;如果每人4本,则还缺25本,这个班有多少学生?
设这个班有x人,那么这批书有多少本?还可以怎么表示? 这批书共有(3x+20)本,还可表示为(4x-25)本。 因为3x+20与4x-25都表示这批书,所以
3x+20=4x-25
由上节课的学习,你能猜想怎么解这个方程吗? 把未知项移一到边,把常数项移到一边。 怎样才能做到这一点呢?
由等式的性质,把等式两边同时减去4x,加上20。即
-4x-20 -4x-20 3x+20 = 4x-25 ① 3x-4x=-20-25 ②
比较①、②,方程中的项4x与20发生了怎样的变化?
4x从右边移到了左边,并且改变了符号,20从左边移到了右边,并且改变了符号。
把②合并同类项,得
-x=-45 ∴x=45
所以这个班有45名学生。
注意:表示同一个量的两个不同的式子相等,这是一个基本的等量关系。 思考:上面解方程中“移项”有什么作用?
解方程经常要合并与移项。前面提到的古老代数书中的“对消”和“还原”,指的就是
“合并”与“移项”。
三、例题
现在我们来解前面提到的方程。 例1 3x+7=32-2x 解:移项,得
3x+2x=32- 7 合并同类项,得
5x=25 ∴x=5
注意:移项要变号。
四、课堂练习
1、下面的移项对不对?如果不对,错在哪里?应当怎样改正? (1)从3x+6=0得到3x=6; (2从)2x=x-1得到2x= 1-x
(3)从2+x-3=2x+1得到2-3-1=2x-x。 2、课本91面(1)~(2);
3、甲粮仓存粮1000吨,乙粮仓存粮798吨,现从甲粮仓运一部分到乙粮仓使甲乙两个粮仓的粮食数量相等,那么应从甲粮仓运出多少吨粮食?
五、课堂小结
1、什么叫做移项?移项的依据是什么? 2、移项法解一元一次方程要注意什么? 移项要注意变号。
3、我们知道了哪些基本的等量关系? 总量=部分量的和;
表示同一个量的两个不同的式子相等. 作业:
课本2;3(3)、(4);8;9。
因篇幅问题不能全部显示,请点此查看更多更全内容