您的当前位置:首页正文

材料本构模型的唯一性

2020-04-05 来源:好走旅游网
2000年10月第21卷第5期东北大学学报(自然科学版)JournalofNortheasternUniversity(NaturalScience)Oct.2000Vol121,No.5

文章编号:100523026(2000)0520566203

材料本构模型的唯一性

杨成祥,冯夏庭,王泳嘉

(东北大学资源与土木工程学院,辽宁沈阳 110006)

摘   要:利用作者最新提出的材料本构模型智能识别的进化学习算法,结合实例分析,从一

个新的角度对该问题进行了阐述,证明了刻意追求学习效果的不合理性・指出根据实验数据建立材料本构模型的正确方法应该是使获得的本构模型不仅对学习样本而且对类似条件下的应力分析都能获得很好的效果・并说明了进化学习算法是解决问题的一个好方法,为材料本构模型的研究提供了一个新的有力工具・关 键 词:本构模型;唯一性;进化学习算法中图分类号:TB124   文献标识码:A

采用有限单元法对岩土工程结构进行数值分析时,关键问题就是选择恰当的地质材料本构模型[1]・因此,建立合理的岩土材料本构模型是岩石力学研究的一个重要方面・按传统数学建模方法,建立材料本构模型的基本途径是通过对实测数据的学习分析,在一定的条件下确定出一个数学表达式及一些必要的参数,从而获得材料的本构模型・然而对于复杂的工程材料,如地质材料、复合材料等,受客观上不可避免的数据有限问题的约束,通过不同的分析手段对同样一组数据的学习结果可以有许多个・这就提出了一个本构模型选择的唯一性问题・由于缺乏严整的理论判据,容易形成过于强调学习效果的选择方案,往往造成结果的不合理・本文利用作者最新提出的材料本构模型智能识别的进化学习算法,结合实例分析,从一个新的角度对该问题进行阐述,探索解决问题的新途径・

学到复杂的非线性应力应变关系・其基本原理是,对于复杂的非线性材料,在简单模型(如线弹性材料本构模型)的基础上根据材料在实验中反映出来的一些宏观特性及影响材料应力应变关系的一些重要因素添加一些任意结构的非线性项,可以充分考虑应力分量之间的非线性耦合对材料的非线性行为的影响,然后利用遗传算法的参数搜索和结构优化功能,与应力分析方法相协作,确定这些添加项的结构和所需的参数,从而最终确定材料的非线性本构模型・该方法克服了传统数学建模方法存在的局限性,在对复杂的非线性材料的建模中显现出较高的性能和较强的生命力・

2 实例分析

211 原始数据

1 进化学习算法原理

进化学习算法是本文作者最新提出的一种全

新的建模方法,它吸收了多学科交叉,多种算法工具和处理技术相集合的先进思想,借鉴了遗传算法的快速全局寻优的特点[2],结合目前存在的一些先进的应力分析手段(如有限单元法),可以直接从实验室或现场较容易获得的少量宏观数据中

复合材料不仅具有细观的非均质性和宏观的各向异性,还具有明显的物理非线性・由正交各向异性单层板层叠成的复合材料层合板在低应力水平时就表现出明显的非线性[3],是一类典型的非线性材料・本文就以这类材料为例・原始数据来源于美国斯坦福大学Lessard和Chang所做的实验[4]・实验如图1所示・实测的是层合板的面内荷载2位移数据・本次计算从中选择了两组实验数据:将对[(±45)6]S板的实验数据作为学习样本,用于建立复合材料单层板的非线性本构模型;

收稿日期:1999211219

基金项目:国家自然科学基金(59604001)和教育部博士点基金(96014513)资助项目

作者简介:杨成祥(1973-),男,安徽芜湖人,东北大学博士研究生;冯夏庭(1964-),男,安徽潜山人,东北大学教授,博士生导师;

王泳嘉(1933-),男,上海人,东北大学教授,博士生导师・

第5期          杨成祥等:材料本构模型的唯一性[(±30)6]S板的实验结果用作检验所建立的本构

567

1;σt-1,i表示前一计算步的应力状态,aijk为参数,

模型的合理性・

也就是要优化的参变量・一旦对复合材料单层板

的非线性本构关系进行了正确的学习,它就可根据同一个叠加原理(如经典层合理论[3])对按不同方式(铺层的角度与顺序)叠合成的复合材料层合板进行应力分析・

图2给出了n分别取为1到5时的学习和预测结果・图中ΔE为变形・作为对照,图中还给出了Lessard和Chang的试验结果・从图中可以看出,随n的增大,学习效果逐步改善,n=5时的学习效果最好,但他们的预测能力不同,只有n=2时的模型的预测效果最好・这说明预测效果并不是随着学习效果的改善而改善,不能完全根据学习情况来确定最终的本构模型;进化学习算法能够从众多的可能方案中通过模型进化找出最佳的本构模型,为问题的解决提供了一个新方法・为更清楚地说明问题,图3给出了平均意义上的学习误差和预测误差随n的变化情况,其中平均误差由各测点的计算值与实测值间的差值的平方平均根计算得到・可以看出,学习误差随n增大而逐步减小,而预测误差变化却无规律可循,比如,这几种计算结果中,n=1时的学习效果最差,它的预测误差却只比n=2和n=3时的结果差,而比n=4和n=5时的预测结果都好・这进一步说明学习结果与预测结果不存在明显的对应关系,好的学习效果只是合理的材料本构模型所必须具备的条件,而不能表示此时的结果就是合理的・为了反映各个测点计算值和实测值间误差随n变化的情况,对学习和预测结果的计算值和实测值

图1 试验示意图(Lessard和Chang)

212 算法实施

考虑横向和剪切非线性,按进化学习算法思想,复合材料单层板的非线性本构关系可以表达如下ΔσS111Δσ2=S12Δσ60

S12

S22+fij(σt-1,i)

[5,6]

00

S66+fij(σt-1,i)-1

0

Δε1Δε2Δε6其中fij(σt-1,i)=

k=0

6

n

k

aijkt-1,i

σ

(i=j=2,6;k=

0,1,…,n)为非线性添加项,这里是一个与应力

状态有关的多项式,n为多项式的最高阶次,n≥

图2 对复合材料层合板的算法执行结果

(a)—学习预测结果;(b)—推广预测结果・

○—试验结果;n=1;┈┈n=2;n=3;  n=4;  n=5・

568

东北大学学报(自然科学版)           第21卷

对应关系,相近的学习效果,其预测效果却可以千

差万别・学习效果只能作为判别材料本构模型合理与否的一条依据,在确定结果时不能过多依赖于学习效果・因此,根据实验数据建立材料本构模型的正确方法应该是使获得的本构模型不仅对学习样本而且对类似条件下的应力分析都能获得很好的效果・

(3)进化学习算法能够从众多的可能结果中找出最佳的,为本构模型唯一性问题的解决提供了一个新方法,是岩石材料本构模型研究的一个新的有力工具・参考文献:

[1]

进行线性回归,则回归直线的斜率越接近于1,说明计算值与实测值吻合得越好・表1列出了所得到的回归直线斜率s・由表中结果可以看出,5种情况都具有满意的学习效果,但它们的预测效果却相差很大・

章根德,朱维耀・岩土介质横观各向同性的模拟[J]・力学进展,1998,28(4):499-508・

(ZhangGD,ZhuWY.Simulationoftransverseisotropyofrcokandsoil[J].MechanicsAdvances,1998,28(4):499-508.)

图3 平均学习误差和预测误差随n的变化

○—学习误差;●—预测误差・

表1 每次拟合和计算中计算值与实测值的回归直线斜率

s

n

[2]

刘勇,康立山,陈毓屏・非数值并行算法(第二册)—遗传算

法[M]・北京:科学出版社,1997.1-137・

(LiuY,KangLS,ChenYP.Geneticalgorithmofnon2

numericalvalueconcurrent.Vol2[M].Beijing:SciencePress,1997.1-137.)

12345

[3]

对学习样本的预测

沈观林・复合材料力学[M]・北京:清华大学出版社,1995.1-184・

(ShenGL.Compositematerialmechanics[M].Beijing:TsinghuaUniversityPress,1995.1-184.)

1.00540.92940.96741.00531.0052

[4]

对非学习样本

1.78710.9681.77211.96422.0609

的预测

LessardL,ChangF2K.Damagetoleranceoflaminatedcompositescontaininganopenholeandsubjectedtocompressiveloadings:partⅡ2experiment[J].JCompositeMater,1991,25:44-64.

3 结  论

(1)在通过对实测数据的学习分析建立材料

[5]HahnHT,TsaiSW.1973,7:102-108.

Nonlinearelasticbehaviorof

unidirectionalcompositelamina[J].JCompositeMater,[6]

的本构模型时,并不是学习效果越好,预测效果就

越好,学习效果好的结果其预测效果反而可能更差・片面强调学习结果是不合理的・

(2)学习结果与预测结果之间不存在明显的

陈浩然・复合材料非线性效应对层合板承载能力的影响[J]・大连工学院学报,1987,26(1):15-20・

(ChenHR.Nonlineareffectofcompositematerialontheloadtoleranceoflamina[J].JournalofDalianInstituteofTechnology,1987,26(1):15-20.)

UniquenessofMaterialConstitutiveModel

YANGCheng2xiang,FENGXia2ting,WANGYong2jia

(SchoolofResourcesandCivilEngineering,NortheasternUniversity,Shenyang110006,China)

Abstract:Thematerialconstitutivemodelisusuallyobtainedbyfittinganalysisonexperimentaldata.Generally,thereare

severalfittingresults,thus,theuniquenessproblemoccurred.Itbringsdifficultiesinselectingtheresult,anditoftenledtothemisunderstandingthatthemoreaccuratethefittingresultis,thebettertheobtainedmodelwillbe.Usingtheevolvinglearningalgorithm(ELA),proposedbytheauthorrecently,whichcanbeusedtoperformtheintellectiveidentificationofmaterialconstitutivemodel,thepaperstatedtheuniquenessfromadifferentpoint.Theresultshowsthatthereisnodirectmappingrelationshipbetweenfittedresultandpredictedresult,anditisunreasonabletopursuethefittingresultexcessively.Pointedoutthatthecorrectmodelobtainedformexperimentaldatashouldworkswellinthenumericsimulationonboththeexperimentsampleandothersimilarproblem.ItisshowedthattheELAcanfindtheglobalbestanswer,itisagoodmethodtosolvetheuniquenessproblem,andprovidesanewtheoryforthestudyofconstitutivemodel.Keywords:constitutivemodel;uniqueness;evolvinglearningalgorithm

(ReceivedNovember19,1999)

因篇幅问题不能全部显示,请点此查看更多更全内容