Production,ManufacturingandLogistics
Cyclicschedulingofa2-machineroboticcell
withtoolingconstraints
HakanGultekin,M.SelimAkturk*,OyaEkinKarasan
DepartmentofIndustrialEngineering,BilkentUniversity,06800Bilkent,Ankara,Turkey
Received29September2003;accepted8March2005
Availableonline16June2005
Abstract
Inthisstudy,wedealwiththeroboticcellschedulingproblemwithtwomachinesandidenticalparts.InanidealFMS,CNCmachinesarecapableofperformingalltherequiredoperationsaslongastherequiredtoolsarestoredintheirtoolmagazines.However,thisassumptionmaybeunrealisticattimessincethetoolmagazineshavelimitedcapacityandinmanypracticalinstancestherequirednumberoftoolsexceedsthiscapacity.Inthisrespect,ourstudyassumesthatsomeoperationscanonlybeprocessedonthefirstmachinewhilesomeotherscanonlybeprocessedonthesecondmachineduetotoolingconstraints.Remainingoperationscanbeprocessedoneithermachine.Theproblemistofindtheallocationoftheremainingoperationstothemachinesandtheoptimalrobotmovecyclethatjointlymin-imizethecycletime.Weprovethattheoptimalsolutioniseithera1-unitora2-unitrobotmovecycleandwepresenttheregionsofoptimality.Finally,asensitivityanalysisontheresultsisconducted.Ó2005ElsevierB.V.Allrightsreserved.
Keywords:Productionscheduling;Automatedsystems;Roboticcell
1.Introduction
Effortstoimproveproductivitywhilemaintainingtheflexibilityofconventionalsystemsledtothedevel-opmentofFlexibleManufacturingSystems(FMS).ThetermFMScoversarangeofsystemsfromFlexibleManufacturingCells(FMC)toFlexibleTransferLines.AnFMCisanintegratedcomputercontrolledsys-temofasetofcomputernumericalcontrol(CNC)machinesandanautomatedmaterialhandlingdevice.AnFMCinwhichthematerialhandlingisdonebyarobotiscalledaroboticcell.Aroboticcellwithtwomachinesconsistsoftwomachineslocatedseriallyandservedbyarobot.Inthisstudy,consistentwiththe
*Correspondingauthor.Tel.:+903122664126;fax:+903122664054.E-mailaddress:akturk@bilkent.edu.tr(M.S.Akturk).
0377-2217/$-seefrontmatterÓ2005ElsevierB.V.Allrightsreserved.doi:10.1016/j.ejor.2005.03.021
778H.Gultekinetal./EuropeanJournalofOperationalResearch174(2006)777–796
roboticcellschedulingliterature,wewillassumethateachpartbeingprocessedgoesthroughtheinputbuf-fer,thefirstmachine,thesecondmachineandfinallytheoutputbufferinthatorder.Afterloadingaparttooneofthemachines,theroboteitherwaitsfortheparttocompleteitsprocessingormovestounloadan-othermachineassoonastheprocessingofthepartfinishes(thereisnowaitingtimetotakeapartfromtheinputbufferortodropaparttooutputbuffer).Astateofthesystemisdefinedbywhethertherobotandthemachinesareloadedoremptyandbythelocationoftherobot.
Intheexistingliterature,theallocationoftheoperationstoeachmachineisassumedtobeconstantandforgivenprocessingtimestheoptimumrobotmovecycleminimizingthecycletimeistobedetermined.Insomemanufacturingoperationssuchaschemicalelectroplatingthisassumptionismeaningfulandtheseoperationsmostlyrequireno-waitconstraints(seeforexampleDawandeetal.,2003).However,inthecaseofmachiningoperationsforwhichtheCNCmachinesareused,theallocationoftheoperationstothema-chinesisalsoadecisionproblem.ThisisbecauseCNCmachinesarecapableofperformingawiderangeofoperationswithmeansofusingdifferentcuttingtools.Therefore,assumingthatprocessingtimesarefixedoneachCNCmachinemaynotaccuratelyrepresentthecapabilitiesoftheCNCmachinesandlimitsthenumberofalternativesunnecessarilyforthesesystems.
Inthisstudy,weconsideraroboticcelloftwoidenticalCNCmachineswhichrepeatedlyproducesonetypeofproduct.Weassumethatthereisaninfinitenumberofpartstobeprocessed,whereapartisdefinedbyafixedsetofoperationstobeperformedinanyorderandeachoperationrequiresauniquetypeofcut-tingtooltobeperformed.Thatis,onetoolcanperformdifferentoperationsbutanoperationcanonlybeperformedbyauniquetypeoftool.Wealsoassumethatsometoolsareloadedonlyonthefirstmachineandsomeothersareloadedonlyonthesecondmachine.Athirdsetoftoolsareduplicatedandloadedonbothmachines.Asaresultofthis,anoperationcaneitherbeprocessedonlyonthefirstmachine,onlyonthesecondmachineoroneithermachine.Thisassumptionisvalidsincethetoolmagazinesofthesema-chineshavelimitedcapacity.Additionally,thoughduplicatingtherequiredtoolsincreasesflexibility,dupli-catingallofthemmaynotbeeconomicallyjustifiable.ThentheproblemisnotonlysequencingtherobotÕsactivitiesbutalsopartitioningthesetofflexibleoperationsintotwomachines.Theobjectiveistominimizethecycletimewhichisdefinedasthelongrunaveragetimerequiredbytheroboticcelltocompleteonepart.Moreformally,weassumethatwehaveinfinitenumberofpartsandifSndenotesthecompletiontimeofthenthpartthenthelongrunaveragecycletimeislimsupn!1Sn/n(Cramaetal.,2000).Cyclicproduc-tioninaroboticcellreferstotheproductionoffinishedpartsbyrepeatingafixedsequenceofrobotmoves.AsdiscussedinDawandeetal.(2003),themainmotivationforstudyingcyclicproductioncomesfrompractice:cyclicschedulesareeasytoimplementandcontrolandaretheprimarywayofspecifyingtheoper-ationofaroboticcellinindustry.Furthermore,Dawandeetal.(2002a)showthatfortheproblemofsched-ulingoperationsinbufferlessroboticcellsthatproduceidenticalparts(similartoourproblem),itissufficienttoconsidercyclicschedulesinordertomaximizethroughput.Theyprovedthatthereisatleastonecyclicscheduleinthesetofallschedulesthatoptimizesthethroughputofthecell.
Intheliterature,thereexistvariousproblemsconcerningtheroboticcells.AnextensivesurveyoftheroboticcellschedulingproblemscanbefoundinCramaetal.(2000)andDawandeetal.(2003).Roboticcellswithnostoragebuffersatorbetweenmachinesarewidelyusedinpractice(MillerandWalker,1990),andasstatedbyKiseetal.(1991),small-scaleflexiblemanufacturingcellswithsimplematerialhandlingdevicesarequitecommoninrealapplications.Sincetherecanbeseveralmachinesrequestingservicesoftherobotatonce,therewillbeconflictsinwhichonemachinewillhavetowaitwhileanotherisservedandifthiswaitingtimeisnothandledproperly,theoverallthroughputofthecellwilldecrease(Kingetal.,1993).
For2-machines,no-buffer,identicalpartsroboticcellschedulingproblem,Sethietal.(1992)provedthattheoptimalsolutionisa1-unitcyclewhereann-unitcyclecanbedefinedas,startingwithaninitialstateofthesystem,loadingandunloadingallofthemachinesexactlyntimesandreturningtotheinitialstateofthesystem(notethatinann-unitcycleexactlynpartsareproduced).Theyalsoconjecturedthat
H.Gultekinetal./EuropeanJournalofOperationalResearch174(2006)777–796779
optimal1-unitcyclesaresuperiortoeveryn-unitcycle,fornP2.1-unitcyclesareimportantsincetheyaresimple,easytoimplementandcontrol.CramaandvandeKlundert(1997)consideredtheidenticalpartsproblemwithmmachinesandshowedthat,consideringonly1-unitcycles,theproblemcanbesolvedin(strongly)polynomialtime.Halletal.(1997)consideredthreemachinecellsproducingsinglepart-typesandprovedthattherepetitionof1-unitcyclesdominatesmorecomplicatedpoliciesthatpro-ducetwounits.ThevalidityoftheconjectureofSethietal.(1992)for3-machineroboticflowshopsisestablishedbyCramaandvandeKlundert(1999).BraunerandFinke(1997)disprovedthisconjectureforcellsofsizefourorlarge.
Additionally,therearemanystudiesconsideringthemultiplepartsroboticcellschedulingprobleminwhichtheobjectiveistofindtheoptimalrobotmovesequenceaswellastheoptimalpartinputsequencethatjointlyminimizethecycletime.ThecomplexityoftheseproblemscanbefoundinSriskandarajahetal.(1998)andHalletal.(1998).
Withthesettingsofthisstudy,weprovethattheoptimalsolutionisnotnecessarilya1-unitcycleasinthecaseofSethietal.(1992)andthata2-unitcyclecanalsogivetheoptimalcycletimeforsomeparametervalues.WealsoshowthattheproblemconsideredbySethietal.(1992)isaspecialcaseoftheproblemunderconsiderationinthisstudy.Wereportsomesensitivityanalysisresultsontheparameterssuchas:theloadingandunloadingtimeoftherobotandthetransportationtimeoftherobot.
Theremainderofthepaperisorganizedasfollows.Inthenextsectionweintroduceourproblemandpresentthenotations,definitionsandtheassumptionspertainingtothisstudy.Thesolutionoftheopera-tionallocationproblemwithtoolingconstraintsispresentedinSection3andthelastsectionisdevotedtotheconcludingremarks.
2.Problemdefinition
Inthissection,wewillstateourproblemmoreformallyandprovidetherequireddefinitionsandnota-tions.Wewillalsohighlightthedifferenceoftheconsideredproblemfromtheearlierstudieswiththeaidofanexample.
TheworkstationsinaroboticcellformachiningoperationsareCNCmachinesandinthesemachinestheprocessingofapartrequiresperformingaseriesofoperationsusingdifferentsetsofcuttingtools.Thecuttingtoolsarestoredinthetoolmagazinesofthesemachines.InanidealFMS,eachmachineiscapableofperformingalloperationsofallpartsscheduledforproductionaslongasithastherequiredtoolsinitstoolmagazine.However,Grayetal.(1993)observethataCNChasalimitedtoolmagazinecapacityandthetotalsetoftoolsrequiredtoprocessalljobsusuallyexceedsthiscapacity.Furthermore,duplicatingalltherequiredtoolsandloadingthemtoeachtoolmagazinemaynotbeeconomicallyjusti-fiableduetohightoolinvestmentcosts.Therefore,weassumethatthereisasinglecopyofsometools.Asubsetofthesesinglecopiesareloadedonthefirstmachineandtheremainingonesareloadedonthesecondmachine.Ontheotherhand,sometoolsareduplicatedandloadedonbothmachines.Asaconse-quence,eachparttobeprocessedhasthreesetsofoperations.O1isthesetofoperationsthatcanonlybeprocessedonthefirstmachine,O2isthesetofoperationsthatcanonlybeprocessedonthesecondmachine,andOisthesetofoperationsthatcanbeprocessedoneithermachine.Theallocationoftheoper-ationsthatareinsetOtothemachinescanbemodifiedforeachindividualpart.Weassumethatwehaveaninfinitenumberofidenticalpartstobeprocessedonthesetwomachinesandeachpartisdefinedbyafixedsetofoperationstobeperformedinanyorder.SotheproblemistofindtheoptimalrobotmovecyclewiththecorrespondingallocationofoperationsthatareinsetOtothemachinesinordertominimizethecycletime.Infact,allocationoftheoperationstothemachinesisequivalenttopartitioningsetOintotwosubsetssothat,theoperationsthatareinthefirstsubsetwillbeprocessedonthefirstmachinewhiletheoperationsintheothersubsetwillbeprocessedonthesecondmachine.
780H.Gultekinetal./EuropeanJournalofOperationalResearch174(2006)777–796
ThefollowingdefinitionswellacceptedintheliteratureareborrowedfromCramaandvandeKlundert(1997).
Definition1.Ann-unitrobotmovecycleisasequenceofrobotmovesduringwhicheachmachineisloadedandunloadedexactlyntimes,andfinallythecellreturnstoitsinitialstate.
Definition2.RobotactivityAicorrespondstothefollowingsequenceofmovements:unloadapartfrommachinei,transportittomachinei+1,andloadmachinei+1.
AccordingtoDefinition2,ina2-machineroboticcellwherethemachinesarenumberedas1and2,theinputbufferisnumberedas0andtheoutputbufferisnumberedas3,wehaveexactlythreerobotactivities:A0,A1andA2.
Sinceinanoptimalcyclewerequirethattherobotmovepathisasshortaspossible,anytwoconsecutiveactivitiesuniquelydeterminetherobotmovesbetweenthoseactivities.Therefore,anyrobotmovecyclecanbeuniquelydescribedbyapermutationoftheaboveactivities.Fortwomachines,wehavetwo1-unitrobotmovecycles:S1:A0A1A2andS2:A2A1A0.Letusrecallthatastateofthesystemisdefinedbywhethertherobotandthemachinesareloadedoremptyandbythelocationoftherobot.Thesetwo1-unitcycleshaveonecommonstateinwhichthefirstmachineisemptyandthesecondmachinehasjustbeenloadedbytherobot.Thus,atransitionfromoneofthesecyclestotheothercanonlybemadeatthiscommonstate.Iftherobotwaitsinfrontofthesecondmachinetofinishtheprocessingofthepart,thentherobotfollowstheactivitiesoftheS1cycle.Elseiftherobottravelstoinputbuffertotakeapartandloadthefirstmachine,thentherobotfollowstheactivitiesoftheS2cycle.Duringthesetransitionsnoextramovementsaremade,thusnolossoccursintermsofrobottransportationtime.
Halletal.(1997)definetwootherrobotmovesequencestorepresenthigherunitrobotmovecycles.ThesearethetransitionmovementsoftherobotfromperformingcycleS1toS2(representedasS12)andS2toS1(representedasS21).IfapartisproducedaccordingtotheS1(S2)cycleinthefirstmachineandaccordingtotheS2(S1)cycleinthesecondmachinethenthetransitionmovementS12(S21)ismade.Toproperlyclarifythesenewrobotmovesequences,weshallusetheterminologyofDawandeetal.(2002b).Fullwaitingisdefinedastherobotwhichhasjustloadedamachinewaitinginfrontofamachinethroughthewholeprocessingtimeofapart.Ontheotherhand,partialwaitingisthewaitingtimefromthearrivaloftherobotatthemachinetilltheprocessingofthepartcompletesatthismachine.Now,wearereadytolisttheS12robotmovementswhichcanbedescribedasA0A1A0:(i)loadthefirstmachineandperformafullwait,(ii)loadthesecondmachineandimmediatelyreturntoinputbuffer,(iii)loadthefirstmachine,and(iv)whileprocessingcontinuesonthefirstmachine,returntothesecondmachineandperformapartialwait.
Inasimilarfashion,inS21movementwhichcanbedescribedasA2A1A2,therobotdoesnotwaitinfrontofthefirstmachineforthepartbutinsteadtravelstothesecondmachine,unloadsitanddropstheparttotheoutputbufferandreturnsbacktothefirstmachinetounloadthepart.Thatis,apartialwaitingonthefirstmachineandafullwaitingonthesecondmachineareencountered.
Furtheranalysisofthesequencesyieldsthefollowing:(i)anexecutionofS1startsandendswithemptymachines,(ii)anexecutionofS2startsandendswithloadedmachines,(iii)anexecutionofS12startswithemptymachinesandendswithfullmachines,and(iv)anexecutionofS21startswithloadedmachinesandendswithemptymachines.Basedontheseobservations,thetransitiondigraphinFig.1depictsthefeasibletransitionsamongsequences.
Halletal.(1997)showedthatanyrobotmovecyclecanberepresentedbythefourrobotmovese-quences:S1,S2,S12andS21.Forexample,S12S21isa2-unitrobotmovecycle,actuallyitistheonly2-unitrobotmovecycleandwecandescribethiscyclebytherobotactivitysequence:A0A1A0A2A1A2.S12S21andS21S12representthesamerobotmovecycle,theonlydifferencebeingthestartingstateofthecycle(theani-matedviewsoftheserobotmovecyclescanbefoundatthewebsitehttp://www.ie.bilkent.edu.tr/~robot).
H.Gultekinetal./EuropeanJournalofOperationalResearch174(2006)777–796781
S1 S12 S21 S2Fig.1.Transitiondigraph.Wewillusethefollowingparametersanddecisionvariables:tiPM1PM2Pd
processingtimeofoperationifori2O1[O2[O.NotethattheprocessingtimesofoperationionbothmachinesareequalforanyiinOP
totalprocessingtimeoftheoperationsthatareinsetO1,PM1¼Pi2O1titotalprocessingtimeoftheoperationsthatareinsetO2,PM2¼i2O2titotalPprocessingtimeoftheoperationsthataretobeallocatedtoeitheroneofthemachines,P¼i2Oti
theload(orunload)timeofworkstationsbytherobot
timetakenbytherobottotravelbetweentwoconsecutivestations.Weassumethattherobottra-veltimefrommachineitojisjjÀijd.Sothetriangularequalityissatisfied.Forexample,thetrans-portationtimefrominputbuffertothesecondmachineisj2À0jd=2dandthetransportationtimefromoutputbuffertoinputbufferisj0À3jd=3d
longrunaveragecycletimetoproduceonepart,adecisionvariableofourproblem
T
NotethatifsetOisempty,thatiswhenP=0,thereisnoallocationproblem.Asaconsequence,theproblembecomesidenticalwiththeproblemconsideredbySethietal.(1992).Anotherimportantobserva-tionisthattheorderinwhichtheoperationsareprocessedonthemachinesdoesnothaveaneffectonthecycletime.
Inordertocalculatethecycletimeofanygivenrobotmovecycle,theprocessingtimesofpartsoneachmachinemustbeknowninadvance.However,inordertofindtheprocessingtimesofthepartsonthema-chines,wehavetoknowtheallocationoftheoperationsinsetOtothemachines.Furthermore,theallo-cationoftheoperationstothemachinesneednotbefixedforeachparttobeprocessed.Thatis,foronepart,OcanbepartitionedasZ1and(OnZ1)andforthenextparttobeprocesseditcanbepartitionedasZ2P
and(OnZ2)whereZ15Z2.SotheprocessingtimeofthefirstpartPonthefirstmachineisi2O1[Z1tiwhiletheprocessingtimeofthesecondpartonthesamemachineisPi2O1[Z2ti.TheprocessingtimesofthefirstP
andsecondpartsonthesecondmachinearei2O2[ðOnZ1Þtiandi2O2[ðOnZ2Þti,respectively.Thustheprocess-ingtimesofthemachinesmaychangefromonerepetitionoftherobotmovecycletotheother.Infact,usingdifferentallocationsforeachparttobeprocessedonthesetwomachinesmayyieldashortercycle
782H.Gultekinetal./EuropeanJournalofOperationalResearch174(2006)777–796
timethanthecasewhenwehaveafixedallocationtype.Inwhatfollows,wegiveanexampleofsuchasituationfortherobotmovecycleS2.
Example1.LetusconsidertherobotmovecycleS2.Assumethataparthasfiveoperationstobeprocessedwiththecorrespondingoperationtimes:t1=15,t2=30,t3=45,t4=10,andt5=30.Alsolet=5andd=10.Furthermore,assumethatbecauseofthetoolingconstraints,operation3mustbeprocessedonthefirstmachineandoperation5mustbeprocessedonthesecondmachine.Thus,PM1¼t3¼45,PM2¼t5¼30andP¼t1þt2þt4¼55.Sethietal.(1992)provedthatthecycletimeofS2forfixedprocessingtime,i.e.,sameallocationoftheoperationsforallparts,is:
T¼6þ8dþmaxf0;aÀð2þ4dÞ;bÀð2þ4dÞg;
whereaandbaretheprocessingtimesofthepartonthefirstandsecondmachinerespectively,i.e.,a¼PM1þa0andb¼PM2þPÀa0wherea0takessomevalueinf0;10;15;25;30;40;45;55g.SincemaxfPM1þa0;PM2þPÀa0gP2þ4d¼50themaxterminthedescriptionofTwilltakeanonnegativevalueandhencewillbeminimizedwhenjaÀbjisminimized.Withthegivenoperationtimesthishappensifoperation1isallocatedtothefirstmachineandoperations2and4areallocatedtothesecondmachine.Soa¼PM1þt1¼60,b¼PM2þt2þt4¼70andjaÀbj¼10.Thenthecycletimebecomes130(anotheralter-nativeistoallocateoperations1and4tothefirstmachineandoperation2tothesecondmachine).Ontheotherhand,letusnowassumethatforthefirstparttobeprocessedweallocatedtheoperationsasbeforesothatwehavea1¼PM1þt1¼60andb1¼PM2þt2þt4¼70,wherea1andb1representtheprocessingtimeofthefirstpartonthefirstandthesecondmachines,respectively.However,assumethatforthesecondpartweallocatedsuchthata2¼PM1þt1þt4¼70andb2¼PM2þt2¼60wherea2andb2aretherespectiveprocessingtimesofthesecondpartonthetwomachines.Assumefurtherthatthesetwoallocationtypesareusedalternatelyinprocessingtheparts.Then,inonerepetitionofthecycle,apartwiththefirstallo-cationtypewillbeprocessedonthefirstmachineandapartwiththesecondallocationtypewillbepro-cessedonthesecondmachine.Thisisbecause,duringonerepetitionofthecycleS2,twodifferentpartsbecomeavailableinthesystem;onenewpartentersthesystemandonepreviouslyenteredpartexitsthesystem.InthesecondrepetitionofS2,apartwiththesecondallocationtypewillbeprocessedonthefirstmachineandapartwiththefirstallocationtypewillbeprocessedonthesecondmachinebecauseweusethesetwoallocationtypesalternatingly.Then,thelongrunaveragecycletimetoproduceonepartcanbefoundasfollows:Sinceweconsidercyclicrobotmoves,letthecyclestartwiththestateinwhichthesecondmachineisloadedbyapartwiththefirstallocationtypeandtherobotisinfrontoftheinputbuffertotakeapartwiththesecondallocationtype.Inordertofindthelongrunaveragetimetoproduceonepart,wehavetoproducetwopartswithdifferentallocationtypesandtaketheaverage.ThismeansrepeatingtheS2cycletwotimes.Letwijbethepartialwaitingtimeinfrontofmachinei,i=1,2,forthepartwithallocationtypej,j=1,2.Thetotalloading/unloadingandtraveltimesarethesameforbothrepetitionsoftheS2cycle,namely,6þ8d.Inthefirstrepetitionofthecyclethereispartialwaitinginfrontofmachine2forthepartwiththefirstallocationtype,w21,andanotherpartialwaitinfrontofthefirstmachineforthepartwiththesecondallocationtype,w12.Ontheotherhand,inthesecondrepetitionwehavew11andw22.Onecaneasilyconcludethatw11¼maxf0;a1Àð2þ4dþw22Þg,w12¼maxf0;a2Àð2þ4dþw21Þg,w21¼maxf0;b1Àð2þ4dÞgandw22¼maxf0;b2Àð2þ4dÞg.Fromthese,
w12þw21¼maxf0;a2Àð2þ4dÞ;b1Àð2þ4dÞg;w11þw22¼maxf0;a1Àð2þ4dÞ;b2Àð2þ4dÞg.Hence,thelongrunaveragecycletimetoproduceonepartis:
maxf0;a1Àð2þ4dÞ;b2Àð2þ4dÞgmaxf0;a2Àð2þ4dÞ;b1Àð2þ4dÞg
þ
22
andwiththegivendatathisboilsdowntoT¼125.
T¼6þ8dþ
H.Gultekinetal./EuropeanJournalofOperationalResearch174(2006)777–796783
Thisexampleshowsthatfixingtheallocationtypeofeverypartlimitsthebetterofavailablealternatives.Notethatfindingtheallocationoftheoperationstothemachineseveniftherobotmovecycleisfixedisnotaneasytask.ThiswillbefurtherexploredinSection3.
Wewillrefertothefollowingdefinitionsthroughoutthispaperespeciallywhenfindingthecycletimesoftherobotmovecycleswithdifferingpartallocationtypes.
Definition3.Inak-allocationtypeproduction,theallocationofeverykthpartintheinfinitesequenceisidenticalandkisminimalwiththisproperty.Thatis,kistheperiodoftheallocation.
Notethata2-unitrobotmovecyclewithone-allocationtypemeansthatallpartstobeprocessedhavethesameallocationofoperationstothemachines.A2-unitcyclewithtwo-allocationtypesmeansthattwoidenticalpartswithdifferentallocationofoperationstothemachinesareproducedalternatingly.Thecycletimeforthiscaseisfoundbycalculatingthetotaltimetofinishonerepetitionofthecycleanddividingbytwo.Ontheotherhand,a2-unitcyclewiththree-allocationtypesmeansthattheallocationofoperationsforparts1;4;...;3zþ1arethesame.Thisalsoholdsforparts2;5;...;3zþ2andparts3;6;...;3z.Inordertofindthecycletimeofann-unitcyclewithk-allocationtypes,wehavetofindtheleastcommonmultipleofnandk;letthisnumberbeM.Tofindtheaveragetimetoproduceonepart,wehavetorepeatthecycleM/ntimesanddividethetotaltimebyM.Inparticular,fora2-unitcyclewiththree-allocationtypes,wehavetorepeatthecycle3timesanddividethetotaltimebyM=6.
Notealsothatinak-allocationtypeproductionforaspecifick,theallocationoftheoperationsisnotuniquebutratherthereexistfinitelymanydifferentallocations.Letrkbeaspecificallocationofoperationsforak-allocationtypeproductionandrÃkbetheoptimalallocationofoperationsforak-allocationtypeproduction.Wefurtherneedthefollowingdefinitionfortheprocessingtimesofthepartsonbothmachines.
Definition4.Consideranyrobotmovecycleusingak-allocationtypeproduction.Letrkbeaspecificallocationoftheoperationstothemachines.Then,Pj(rk)isthesummationoftheoperationtimesthatareallocatedtothefirstmachineforapartwhichusesthejthallocationtypewherej6k.Notethatunderthissetting,thetotalprocessingtimeofthispartonthesecondmachineissimplyPÀPjðrkÞ.
Inlightofthesenewdefinitions,inExample1abovethereexisttwodifferentallocationtypes.Inparticular,a1representsPM1þP1ðr2Þwhereasa2representsPM1þP2ðr2Þ.Thesearetheprocessingtimesonthefirstmachine.Theprocessingtimesonthesecondmachineforthefirstandsecondallo-cationtypesarePM2þPÀP1ðr2ÞandPM2þPÀP2ðr2Þrespectively.Fig.2depictsak-allocationtypeproduction.
Inadditiontothesedefinitions,weletTS2ðrkÞbetheaveragecycletime(toproduceonepart)ofS2usingk-allocationtypeswithspecificallocationrkandTS2ðoptÞ¼minrkfTS2ðrkÞg.LetTS12S21ðrkÞandTS12S21ðoptÞbede-finedinasimilarfashionformovecycleS12S21.
Inthenextsectionwewillreducethenumberofpotentiallyoptimalrobotmovecyclestothreeandwewillfindtheregionsofoptimalityfortheserobotmovecyclesaccordingtothegivenparameterssuchas,theloadingandunloadingtimeandtherobottransportationtimed.
3.Schedulingwithtoolingconstraints
Inordertofindtheoptimalrobotmovecycle,wehavetocomparethecycletimesoftherobotmovecycles.Thecycletimesdependontheallocationoftheoperations.Inthenextsubsectionwewilldeterminetheoptimalallocationtypesforthreerobotmovecyclesandprovethataccordingtogivenparametervaluesoneofthesethreerobotmovecyclesisoptimal.InSection3.2wewilldeterminetheregionsofoptimality
foreachofthethreerobotmovecyclesandSection3.3isdevotedtothesensitivityanalysisonproblemparameters.
3.1.Optimalallocationofoperations
InthissectionwewillfirstobservethatthereisnoallocationproblemforS1.Theorems1and3willdeterminetheoptimalktobeusedwiththecyclesS2andS12S21respectively.InTheorem2wewillprovethatdeterminingtheoptimalallocationofoperationstothemachinesisNP-completeforrobotmovecycleS2.WeshallassumePM1PPM2throughoutallproofs.Theothercasecanbetreatedinasimilarfashion.
ThecycletimesofthethreerobotmovecyclesdiscussedpreviouslyarepresentedinAppendixA.ThecycletimeofS1,giveninEq.(A.1)doesnotdependontheprocessingtimesofthepartsonthemachinesindividuallybutonlydependsonthetotalprocessingtime,inourcasePþPM1þPM2.Thus,whatevertheallocationoftheoperationsbe,thecycletimeisthesameandhencethereisnoallocationproblemforS1.ThefollowingtheoremprovidestheoptimalktobeusedwithS2:Theorem1.Consideracyclicproductionperformingthe1-unitcycleS2.Wehave:1.IfPM1PPþPM2,thenusingone-allocationisoptimal,
2.Otherwise,usingeitherone-allocationortwo-allocationisoptimal.
Proof
1.Thetotaltimetocompleteproductionofallkpartswithk-allocationtypeforcycleS2underspecificallocationofoperationsrk,isgiveninAppendixA,Eq.(A.4).SincePM1PPþPM2,thenPM1þPjðrkÞPPM2þPÀPðjÀ1ÞðrkÞ;8j2½1;...;kwherefornotationalpurposeswetake
Ã
P0ðrkÞPkðrkÞ.Therefore,underoptimalallocationrÃk,wehavePjðrkÞ¼0;8j.However,thisisnoth-ingbutone-allocationtypeandtheoptimalcycletimeis:
TS2ðoptÞ¼6þ8dþmaxf0;PM1Àð2þ4dÞg.
H.Gultekinetal./EuropeanJournalofOperationalResearch174(2006)777–796785
2.Consideragain(A.4).SincePM1
M2
PM1þPjðrÃÀPðjÀ1ÞðrÃkÞ%PþPkÞ,\"j.Considertwosuchconsecutiverelations,sayforjthandðjþ1Þthmaxterms:
M2
PM1þPjðrÃÀPðjÀ1ÞðrÃkÞ%PþPkÞ;M2PM1þPðjþ1ÞðrÃÀPjðrÃkÞ%PþPkÞ.
ð1Þð2Þ
Fromrelations(1)and(2),iftheequalitiescannotbesatisfied,thenthedifferencebetweenbothsidesof
M2
ÀPðjÀ1ÞðrÃandeachequalitymustbeminimized.Thatis,bothjPM1þPjðrÃkÞÀðPþPkÞÞj
M1M2ÃÃÃÃ
jPþPðjþ1ÞðrkÞÀðPþPÀPjðrkÞÞjmustbeminimized.NotehoweverthatifPjðrkÞandPðjÀ1ÞðrkÞmin-ÃÃ
imizethefirstdifference,thenPjðrÃkÞandPðjþ1ÞðrkÞ¼PðjÀ1ÞðrkÞsimultaneouslyminimizetheseconddiffer-ÃÃence.Thisyieldseitheraone-allocationðPðjÀ1ÞðrÃkÞ¼PjðrkÞ¼Pðjþ1ÞðrkÞforallj)oratwo-allocation
ÃÃÃ
ðPðjÀ1ÞðrÃhkÞ¼Pðjþ1ÞðrkÞandPjðrkÞ¼PjÀ1ðrkÞforallj).ThoughTheorem1guidesusinselectingtheoptimalallocationtypeinacyclicproductionS2,findingtheoptimalallocationofoperationstothetwomachinesisnotaneasyjobevenwhenthereisafixedallo-cationtypeandevenwhenPM1¼PM2¼0.Moreformally,weshallnowshowthatthefollowingdecisionproblemisNP-complete.
S2operationallocationforone-allocationtypedecisionproblem(problemS2TAP):
Instance:AfinitesetofoperationsOwithrespectiveintegerprocessingtimesft1;...;tpg,loading/unloadingtime,transportationtimedandarealnumberK.
Question:Canwefindanallocationofoperationstothetwomachines,r1,sothatthelongrunaveragecycletimeTS2ðr1Þ6K?
Theorem2.ProblemS2TAPisNP-complete.
Proof.S2TAPisinNPsincewheneverwearegivenaspecificallocationofoperations,wecanreadilyfindthecorrespondinglongrunaveragecycletimeandhencedecideifitislessthanorequaltoK.Itisapparentfromexpression(A.2)forTS2ðr1Þ(seeAppendixA)thatthewellknownNP-completeproblem2-partition(seeGareyandJohnson,1976)readilyreducestoS2TAP.h
ThefollowingtheoremdeterminestheoptimalktobeusedwithS12S21.Theorem3.For2-unitrobotmovecycleS12S21,usingtwoallocationtypesisoptimal.
Proof.Inordertoprovethistheorem,wewillfirstcomparethecycletimeoftwo-allocationtypeforthecycleS12S21withthecycletimeofone-allocationtypeforthecycleS12S21.Thelongrunaveragecycletimesofone-allocationandtwo-allocationtypesforthecycleS12S21aregiveninEqs.(A.5)and(A.6),respectively.
Wefirstarguethattheoptimalallocationfortwo-allocationtypeforthecycleS12S21isfoundbyletting
Ã1P1ðrÃ2Þ¼ðPÀP2ðr2ÞÞ¼0.LetusfirstrewriteEq.(A.6)byentering2ðP1ðr2ÞþðPÀP2ðr2ÞÞÞintothemaxterm,i.e.,addingittoallthethreeargumentsofmax.Thisleadsustothefollowingform:
TS12S21ðr2Þ¼1=2ð12þ14dþPM1þPM2Þþ1=2ðmaxfP1ðr2ÞþPÀP2ðr2Þ;PM1þP1ðr2Þ
þPÀð2þ4dÞ;PM2þ2PÀP2ðr2ÞÀð2þ4dÞgÞ.
786H.Gultekinetal./EuropeanJournalofOperationalResearch174(2006)777–796
Now,P2(r2)onlyappearswithanegativecoefficientandP1(r2)onlyappearswithapositivecoefficient.Tominimize,wemustincreaseP2(r2)anddecreaseP1(r2)accordingly.So,wetakeP1ðrÃ2Þ¼0and
M1M2Ã
P2ðr2Þ¼P.SincewealsohavePPPthecycletimecorrespondingtothisallocationtypebecomes:
12þ14dþPM1þPM2þmaxf0;ðPþPM1ÞÀð2þ4dÞg
.ð3ÞTS12S21ðrÃÞ¼2
2LetusmovePinEq.(A.5)insidethemaxterm.Thuswehave:
M1
TS12S21ðrÃþPM2Þþ1=2ðmaxfP;PþPM1þP1ðrÃÞ¼1=2ð12þ14dþP1Þ1
Àð2þ4dÞ;PþPM2þðPÀP1ðrÃ1ÞÞÀð2þ4dÞgÞ.
ComparingthiswithEq.(3),itiseasilyseenthatTS12S21ðr2Þ6TS12S21ðr1Þ.
Nowletusconsiderthecycletimefork-allocation(k>2)typeforthecycleS12S21.Observethat,inrobotmovecycleS12S21,initially,themachinesareemptyandtherobotiswaitinginfrontoftheinputbuffer.Sincethisisa2-unitcycle,exactlytwopartsareloadedandunloadedtoeachmachineandattheend,identicaltotheinitialstate,themachinesareagainemptyandtherobotiswaitinginfrontoftheinputbuffer.Then,inak-allocationtypeforthecycleS12S21,this2-unitcycleisrepeatedexactlyk/2timestoproduceallkpartswithdifferentallocationtypes.Theobjectiveistofindtheoptimalallocationforthesepartstothemachines.However,theoptimalallocationateachrepetitionofthecyclemustbethesameastheoptimalallocationoftheoperationsforauniquecycleS12S21.Thisisbecause,ak-allocationtypeisaconcatenationofk/2two-allocationtypesforthecycleS12S21.Thus,weconcludethattheoptimalcycletimeforak-allocationtypeforthecycleS12S21isthesameastheoptimalcycletimeforatwo-allocationtypeforthecycleS12S21.h
Now,wearereadytoprovideoneofthemajorresultsofourpaperwhichwillrestrictoursearchfortheoptimalcycletothreerobotmovecycles.WefirstrecallaresultduetoHalletal.(1997).
Lemma1(Halletal.,1997).Inanyfeasiblerobotmovecycle,thenumberofS12sequencesisequaltothenumberofS21sequences.
Theorem4.AtleastoneofthecyclesS1,S2orS12S21hasacycletimethatislessthanorequaltothecycletimeofanygivenn-unitrobotmovecycle.
Fortheclarityofthepresentation,thisproofisdeferredtoAppendixB.
Insummary,wehavethreepotentiallyoptimalrobotmovecycles.FortherobotmovecycleS2,wehaveanallocationproblem.However,weknowfromTheorem1thatifPM1PPþPM2,thentheallocationproblemdisappearsandwehaveTS2ðoptÞ¼6þ8dþmaxf0;PM1Àð2þ4dÞg.Else,wecanfindlowerandupperboundsforthiscycletime.WegetalowerboundwhenitispossibletohavePM1þPjðr2Þ¼PM2þðPÀPjðr2ÞÞ,j2½1;2.Sinceanyfeasiblesolutionprovidesanupperboundfortheoptimalcycletime,wewillpresentafeasiblesolutionthatcanbeattainedwithanygivenproblemin-stanceandusethisfeasiblesolutionasanupperbound.Foragivenprobleminstance,letusallocatealloftheoperationsthatareinsetOtothefirstmachineforthefirstpartandtothesecondmachineforthesecondpart.Notethatsuchanallocationisfeasiblewithanygivenproblemparametervalues.Thus,P1ðr2Þ¼ðPÀP2ðr2ÞÞ¼PinEq.(A.3).LetTS2representthelowerboundofcycleS2andTS2representtheupperbound.Inotherwords:
TS2¼6þ8dþmaxf0;ðPþPM1þPM2Þ=2Àð2þ4dÞg;
TS2
maxf0;PþPM1Àð2þ4dÞ;PþPM2Àð2þ4dÞg
¼6þ8dþ
2
M1M2
maxf0;PÀð2þ4dÞ;PÀð2þ4dÞg
.þ
2
H.Gultekinetal./EuropeanJournalofOperationalResearch174(2006)777–796787
SinceweassumedthatPM1PPM2theupperboundbecomes:TS2¼6þ8dþ
11
maxf0;PþPM1Àð2þ4dÞgþmaxf0;PM1Àð2þ4dÞg.22
NowwearereadytopresenttheoptimalS2cycletimesalongwithlowerandupperboundsbasedona
setofbreakpointspartitioningthesearchspace.(1)IfPM1PPþPM2,then
(i)IfPM1P2þ4d,then
TS2ðoptÞ¼4þ4dþPM1.(ii)Otherwise,
TS2ðoptÞ¼6þ8d.
(2)Else(i.e.PM1
(i)IfðPþPM1þPM2Þ=2P2þ4d,then
TS2¼4þ4dþðPþPM1þPM2Þ=2.(ii)Otherwise,
TS2¼6þ8d.
Theupperboundsareasfollows:(i)IfPM1P2þ4d,then
TS2¼4þ4dþPM1þP=2.(ii)ElseifPþPM1<2þ4d,then
TS2¼6þ8d.
(iii)Else,
TS2¼5þ6dþðPþPM1Þ=2.
ð4gÞð4fÞð4eÞð4dÞð4cÞð4bÞð4aÞ
Ontheotherhand,thecycletimeoftwo-allocationtypeforthecycleS12S21isgiveninEq.(A.6).SincePPPM2andemployingTheorem3,wegetthefollowingcycletime:
M1
TS12S21ðoptÞ
ðPM1þPM2Þ1
þmaxf0;ðPM1þPÞÀð2þ4dÞg.¼6þ7dþ
22
Therefore,wehavethefollowingbreakpointsforthiscycletime:(1)IfPþPM1P2þ4dthen,TS12S21ðoptÞ¼5þ5dþP(2)Else,TS12S21ðoptÞ
ðPM1þPM2Þ
.¼6þ7dþ
2
ð5bÞ
M1
ðPþPM2Þ
.þ
2
ð5aÞ
788H.Gultekinetal./EuropeanJournalofOperationalResearch174(2006)777–796
3.2.Regionsofoptimality
Inthesequel,wewillproveagroupoflemmaswhichwilljointlyleadtoTheorem5presentingthere-gionsofoptimalityforthesethreerobotmovecycles.
Lemma2.IfPM1þPM2P2d,thenS2givestheminimumcycletime.
Proof.AssumePM1þPM2P2d.LetusfirstcompareTS1andTS12S21ðoptÞ.TS1isasgiveninEq.(A.1).1.IfPþPM1P2þ4d,TS12S21ðoptÞisgiveninEq.(5a).AsimplecomparisonyieldsTS12S21ðoptÞ M1 þP M2 ðPM1þPM2Þ2d þPTS12S21ðoptÞ)TS12S21ðoptÞ6TS1.P6þ6dþPþ 22 WewillnowcompareTS2ðoptÞwithTS12S21ðoptÞ. (1)IfPM1PPþPM2,then (1.1)IfPM1P2þ4d,thisimpliesthatPþPM1P2þ4d.Then,TS2ðoptÞandTS12S21ðoptÞaregivenby Eqs.(4a)and(5a)respectively.Hence,weconcludethatinthisregionTS2ðoptÞ TS12S21ðoptÞ PþPM1þPM1þPM22þ4dþ2d ¼6þ8d¼TS2ðoptÞP5þ5dþ¼5þ5dþ 22 )TS2ðoptÞ6TS12S21ðoptÞ. (1.3)IfPþPM1<2þ4d,TS2ðoptÞandTS12S21ðoptÞarepresentedinEqs.(4b)and(5b),respectively. SincePM1þPM2P2dwehave: TS12S21ðoptÞ ðPM1þPM2Þ P6þ8d¼TS2ðoptÞ)TS2ðoptÞ6TS12S21ðoptÞ.¼6þ7dþ 2 (2)ElseifPM1 thatTS26TS12S21ðoptÞ,thenwecanconcludethatTS2ðoptÞ6TS12S21ðoptÞ.Wehavethefollowingcases:(2.1)IfPM1P2þ4d,thisimpliesthatPþPM1P2þ4d.TS2andTS12S21ðoptÞaregiveninEqs.(4e) and(5a),respectively.WeconcludeeasilythatTS2ðoptÞ6TS2 respectively.SincePM1þPM2P2d,wehave: TS12S21ðoptÞ PþPM1þPM1þPM2PþPM1þ2dðPþPM1Þ ¼5þ6dþP5þ5dþ¼5þ5dþ 222)TS2ðoptÞ6TS26TS12S21ðoptÞ. (2.3)IfPþPM1<2þ4d,thisimpliesthatPM1<2þ4d.Forthiscase,TS2andTS12S21ðoptÞaregiven inEqs.(4f)and(5b),respectively.SincePM1þPM2P2dweconcludeeasilythatforthiscasealsoTS2ðoptÞ6TS26TS12S21ðoptÞ.SinceinallofthecasesTS26TS12S21ðoptÞ,weconcludethatS2hastheminimumcycletime. h H.Gultekinetal./EuropeanJournalofOperationalResearch174(2006)777–796789 Lemma3.If2PþPM1þPM262d,thenS1givestheminimumcycletime. Proof.2PþPM1þPM262d)PþPM1<2þ4d.TS12S21ðoptÞisgiveninEq.(5b).WhenwecomparethiswithTS1giveninEq.(A.1),since2PþPM1þPM262d,wehave: TS1¼6þ6dþPþP M1 þP M2 2PþPM1þPM2þPM1þPM2ðPM1þPM2Þ 66þ7dþ¼6þ6dþ 22 )TS16TS12S21ðoptÞ. NowwewillcompareTS1withTS2ðoptÞ.Wehavethefollowingcases: (1)AssumePM1PPþPM2.Since2PþPM1þPM262d,thenPM1<2þ4d.UsingTS2ðoptÞasgivenin Eq.(4b)wehave: TS1¼6þ6dþPþPM1þPM266þ6dþ2PþPM1þPM266þ8d )TS16TS2ðoptÞ. (2)IfPM1 isgiveninEq.(4d).Thecomparisonincase1aboveisvalidforthiscasealso.Hence,weconcludethatTS16TS2ðoptÞ.hLemma4.IfPM1þPM2<2d,2PþPM1þPM2>2dandPþ2PM1þPM262þ6d,thenS12S21givestheminimumcycletime. Proof.SincePM1þPM2<2d,thenPM1<2þ4d.IfPM1PPþPM2thenTS2ðoptÞisgiveninEq.(4b),whichis6þ8d.IfPM1 (1)IfPþPM1P2þ4d,TS1andTS12S21ðoptÞaregiveninEqs.(A.1)and(5a),respectively.Observingthese cycletimesweconcludethatTS12S21ðoptÞ Pþ2PM1þPM22þ6d ¼6þ8d)TS12S21ðoptÞ6TS2ðoptÞ.65þ5dþ¼5þ5dþ 22 (2)Otherwise,TS12S21ðoptÞisgiveninEq.(5b).Since2PþPM1þPM2>2d,wehave: TS1 2PþPM1þPM2PM1þPM2ðPM1þPM2Þ ¼TS12S21ðoptÞþ>6þ6dþ2d=2þ¼6þ6dþ 222 )TS12S21ðoptÞ TS12S21ðoptÞ¼6þ7dþðPM1þPM2Þ=2<6þ7dþ2d=2¼6þ8d)TS12S21ðoptÞ Lemma5.IfPM1þPM2<2d,2PþPM1þPM2>2dandPþ2PM1þPM2>2þ6d,theneitherS2orS12S21givestheminimumcycletime. Proof.InthisregionsinceweassumedthatPM1þPM2<2d,wehave: 2þ6d6Pþ2PM1þPM2 2þ4d. TS12S21ðoptÞisgiveninEq.(5a).WhenwecomparethiscycletimewithTS1giveninEq.(A.1),weconcludethatTS12S21ðoptÞ Example2.Letussupposethatwehavefouroperationswithatotalprocessingtimeof100,and=10andd=10.Becauseofthetoolingconstraints,oneoftheoperationswithaprocessingtimeof10mustbeprocessedonthefirstmachine,andanotheronewithaprocessingtimeof5mustbeprocessedonthesecondmachine.Therefore,PM1¼10andPM2¼5.Theremainingtwooperationswithatotaloperationtimeof85willbeallocatedtothemachines.Whenweobservetheparameters,weseethatLemma5isapplicabletothiscase.SincePþPM1P2þ4d,thecycletimeforS12S21isgiveninEq.(5a)andwithgivenparametersbecomes155. ForS2,theallocationoftheoperationsbecomesimportant.Forthefirstcase,assumethatwehaveatotaloftwooperationstobeallocatedforwhich,oneoperationhasaprocessingtimeof50andtheother35makingatotalof85.CalculatingthecycletimeofS2giveninEq.(A.3),weget140,whichislessthanthecycletimeofS12S21.Forthesecondcase,assumethatwehaveagaintwooperationstobeallocatedforwhich,oneoperationhasaprocessingtimeof75andtheother10makingatotalof85.Now,thecycletimeforS2isequalto160.Sincethisisgreaterthan155,forthiscaseS12S21isoptimal.There-foreweconcludethatdependingontheallocationoftheoperationsofS2,eitherS2orS12S21canbeoptimal. CombiningthefindingsinLemmas2–5,wenowprovidethemainresultofthispaper.Theorem5 (1)IfPM1þPM2P2d,thenS2givestheminimumcycletime,(2)Else, (2.1)If2PþPM1þPM262d,thenS1givestheminimumcycletime,(2.2)Else, (2.2.1)If2PM1þPM2þP62þ6d,thenS12S21givestheminimumcycletime, (2.2.2)Else,dependingontheallocationoftheoperationsforS2,eitherS2orS12S21givesthemin-imumcycletime.RememberthatforthistheoremandtheproofweassumedthatPM1PPM2.Forthereversecase,theresultscaneasilybeadaptedinanalogywiththeaboveanalysisresultinginthefollowingcorollary:Corollary1.IfweassumethatPM1 H.Gultekinetal./EuropeanJournalofOperationalResearch174(2006)777–796 PM1706050ε+3δ40302δ2010S1010δ1S12S212030402506070S23Sor SSor S12SS2 12 212 2180902ε+6δ100110120P791 Fig.3.OptimalRegionsforS1,S2andS12S21.3.3.Sensitivityanalysis Inthissubsectionwewillperformasensitivityanalysisonparameterssuchastherobottransportationtimed,andtheloading(orunloading)timeofthemachines,andshowhowtheregionsofoptimalitychangewithachangeintheseparameters.WerepresentPM2asaPM1,where06a61.Thefollowingexamplewillbeusefulinordertoanalyzetheparametersgraphically. Example3.Assumethat¼d¼10anda¼0,whichmeansthatPM2¼0.WecanshowtheregionsforthiscaseasagraphofPversusPM1asinFig.3. Considerparameters,d,andaoneatatime.Theorem5,case1statesthatifPM1þPM2P2d,thenS2givestheminimumcycletime.Fromhereweconcludethatifthetransportationtimeiszeroornegligible,thenS2alwaysgivestheminimumcycletime.Thisislogicalsincewecanconsidertherobotasathirdmachinewhichisthebottleneckone.Then,themainconcernistominimizethewaitingtimeoftherobotinfrontofthemachines.Inordertoachievethis,incycleS2,whileprocessingofapartcontinuesononeofthemachines,therobotmakesotheractivities(suchastransportation,loadingorunloadingoftheothermachine,waitinginfrontoftheothermachine,etc.)withoutbeinglate. Thedefinitionofn-unitcyclesstatesthateverymachineisloadedandunloadedexactlyntimes.Thustheloading/unloadingtimesareequivalentforallcycles.However,incyclesS2andS12S21,whileprocessingcontinuesononeofthemachines,therobotdoesnotwaitinfrontofthemachineandmakesotheractivitiesandwhentherobotreturnsbacktothemachinetounloadthereisapartialwaitingtimeinfrontofthismachine.Theloading/unloadingtimeaffectsthesepartialwaitingtimes. WedefinedaasPM2/PM1andassumedthat06a61.WhenweincreasePM2from0toPM1,thisisinfavorofS2becauseincycleS2theoptimalallocationistheonewhichbalancestheprocessingtimesonbothmachinesandwhenPM2isclosetoPM1,theabilitytobalancetheprocessingtimesincreases.4.Conclusion Inthispaper,westudiedthe2-machines,identicalpartsroboticoperationallocationproblemwithtool-ingconstraints.TheoperationallocationflexibilityisadirectconsequenceofassumingthatthemachinesintheroboticcellareCNCmachinesasisthecaseformachiningoperations.Theproblemistofindtheallo-cationoftheoperationstothemachinesandthecorrespondingrobotmovecyclethatjointlyminimizethe 792H.Gultekinetal./EuropeanJournalofOperationalResearch174(2006)777–796 cycletime.Asasolutiontothisproblem,weprovedinTheorem4thattheoptimalsolutioniseithera1-unitora2-unitcycle.InTheorem5,wepresentedtheregionsofoptimalityfortheserobotmovecycles.WeshowedthatthestudyofSethietal.(1992)becomesaspecialcaseofourstudy.Weconductedasensitivityanalysisonparameters.Suggestedfutureresearchdirectionsincludeconsideringnon-identicalmachinessothatthetimetocompleteaspecificoperationisdifferentforthetwomachines.Anothertopicistoconsideradual-gripperrobotwhichmanagesloadingandunloadingatthesametime.Acknowledgments Theauthorswouldliketoacknowledgethethreeanonymousrefereesfortheirhelpfulguidanceonimprovingthepresentationandthecontentsofthepaper.ThisworkwassupportedinpartbytheScientificandTechnicalResearchCouncilofTurkeyundergrant#2211.AppendixA.Cycletimecalculations WewillfindthecycletimesofS1,S2andS12S21foragivenk-allocationtype.LetusstartwithS1.Sethietal.(1992)provedthecycletimeofS1tobe: TS1¼6þ6dþaþb; whereaandbaretheprocessingtimesofthepartonthefirstandsecondmachinesrespectively.Withournotationthiscycletimeisthefollowing TS1¼6þ6dþPþPM1þPM2 ðA:1Þ anditdoesnotdependontheallocationtype.Sowhatevertheallocationis,thiscycletimeisthesame.NowconsiderS2.Sethietal.(1992)alsoprovidedthat: TS2¼6þ8dþmaxf0;aÀð2þ4dÞ;bÀð2þ4dÞg; whereaandbaredefinedasabove.WithourdefinitionstheaboveequationisthecycletimeofS2withone-allocationtypewhere,a¼PM1þP1ðr1Þandb¼PM2þPÀP1ðr1Þ.Thenthecycletimeofaone-allocationforcycleS2withournotationisthefollowing: TS2ðr1Þ¼6þ8dþmaxf0;PM1þP1ðr1ÞÀð2þ4dÞ;PM2þPÀP1ðr1ÞÀð2þ4dÞg. ðA:2Þ Nowconsideratwo-allocationtypeforthecycleS2:forapartwiththefirstallocationtype,theprocess-ingtimeonthefirstmachineisPM1þP1ðr2ÞandonthesecondmachineisPM2þPÀP1ðr2Þ.Forapartwiththesecondallocationtype,theprocessingtimesonthefirstandthesecondmachinesarePM1þP2ðr2ÞandPM2þPÀP2ðr2Þrespectively.Then,thelongrunaveragecycletimetoproduceonepartwithcycleS2withaspecifictwo-allocationtyper2is: TS2ðr2Þ¼6þ8dþ1=2ðmaxf0;PM1þP1ðr2ÞÀð2þ4dÞ;PM2þðPÀP2ðr2ÞÞÀð2þ4dÞgÞ þ1=2ðmaxf0;PM1þP2ðr2ÞÀð2þ4dÞ;PM2þðPÀP1ðr2ÞÞÀð2þ4dÞgÞ. Wecaneasilygeneralizethisforak-allocationtypeforthecycleS2asfollows: TS2ðrkÞ¼6þ8dþ1=kðmaxf0;PM1þP1ðrkÞÀð2þ4dÞ;PM2þðPÀPkÞðrkÞÀð2þ4dÞgÞ þ1=kðmaxf0;PM1þP2ðrkÞÀð2þ4dÞ;PM2þðPÀP1ðrkÞÞÀð2þ4dÞgÞþ1=kðmaxf0;PM1þP3ðrkÞÀð2þ4dÞ;PM2þðPÀP2ðrkÞÞÀð2þ4dÞgÞþÁÁÁþ1=kðmaxf0;PM1þPkðrkÞÀð2þ4dÞ;PM2þðPÀPðkÀ1ÞðrkÞÞÀð2þ4dÞgÞ. ðA:4ÞðA:3Þ H.Gultekinetal./EuropeanJournalofOperationalResearch174(2006)777–796793 NowletusconsidercycleS12S21.Thelongrunaveragecycletimeforone-allocationtypeforthecycleS12S21canbederivedasfollows:TheactivitysequenceofthisrobotmovecycleisA0A1A0A2A1A2.Initiallybothmachinesareemptyandtherobotisinfrontoftheinputbufferjuststartingtotakeapart.Therobottakesapartfromtheinputbuffertransportsittothefirstmachineandloadsit,(+d+);waitsinfrontofthemachinetofinishtheprocessingofthepart,(PM1þP1ðr1Þ);unloadstheparttransportsittothesecondmachineandloadsit,(+d+);returnsbacktotheinputbuffer,takesanotherpart,transportsittothefirstmachineandloadsit,(2d++d+);travelstothesecondmachine,(d);waitsifnecessary,(w21);unloadsthemachine,transportstheparttotheoutputbufferanddropsit(+d+);travelstothefirstmachine,(2d);waitsifnecessary,(w11);unloadsthemachine,transportstheparttothesecondmachineandloadsit,(+d+);waitsforthemachinetofinishtheprocessing,(PM2þðPÀP1ðr1ÞÞ);unloadsthemachine,transportsittotheoutputbuffer,dropsthepartandreturnsbacktotheinputbuffersothattheinitialandthefinalstatesarethesame,(+d++3d).Asaresult,totaltimetoproducetwopartsis: TS12S21ðr1Þ¼12þ14dþPþPM1þPM2þw11þw21; wherew11¼maxf0;PM1þP1ðr1ÞÀð2þ4dþw21Þgandw21¼maxf0;PM2þPÀP1ðr1ÞÀð2þ4dÞg.Inotherwords,w11þw21¼maxf0;PM1þP1ðr1ÞÀð2þ4dÞ;PM2þPÀP1ðr1ÞÀð2þ4dÞg.Hencethecycletimeforone-allocationforthecycleS12S21is: 12þ14dþPþPM1þPM2þmaxf0;PM1þP1ðr1ÞÀð2þ4dÞ;PM2þPÀP1ðr1ÞÀð2þ4dÞg .TS12S21ðr1Þ¼ 2 ðA:5ÞNowconsiderthecasewhenwehavetwo-allocationtypes: 12þ14dþPM1þPM2þP1ðr2ÞþðPÀP2ðr2ÞÞþw12þw21 ;TS12S21ðr2Þ¼ 2 wherew12¼maxf0;PM1þP2ðr2ÞÀð2þ4dþw21Þgandw21¼maxf0;PM2þPÀP1ðr2ÞÀð2þ4dÞg.Inotherwords, TS12S21ðr2Þ¼1=2ð12þ14dþPM1þPM2þP1ðr2ÞþðPÀP2ðr2ÞÞÞþ1=2ðmaxf0;PM1þP2ðr2Þ Àð2þ4dÞ;PM2þPÀP1ðr2ÞÀð2þ4dÞgÞ. ðA:6Þ AppendixB.ProofofTheorem4 Thefollowingdefinitionwillplayacrucialroleintheforthcomingcontext. Definition5.State0isdefinedtobethestateinwhichbothmachinesareemptyandtherobotisinfrontoftheinputbuffer. Consideranyn-unitrobotmovecycleduringwhichState0isencountered.Clearly,theallocationsimmediatelyprecedingandthoseimmediatelyfollowingthisstatecanbetreatedascompletelyindependentfromeachother.Asfarasthecycletimecomputationsareinvolved,thecontributionoftheportionofthecyclebetweentwoState0Õsissimplyadditive.Thisobservationdeservesfurtherattention: Fact1.Theaveragecycletimeofann-unitrobotmovecycleissimplytheaverageofthecycletimecorrespondingtoasub-cyclebetweentwoState0Õsandthecycletimeoftheremainingcycleafterthesub-cycleisextracted. Afterinspectingthecycleswehaveintroducedthusfar,itiseasytostatethat: 794H.Gultekinetal./EuropeanJournalofOperationalResearch174(2006)777–796 Fact2.S1cyclestartsandendswithState0.S12sequencestartswithState0andS21sequenceendswithState0. Withtheseobservations,wearenowreadytoproceedwiththeproofofTheorem4. Proof.Halletal.(1997)showedthatanyn-unitrobotmovecyclecanberepresentedbythefourrobotmovesequences:S1,S2,S12andS21.However,notallofthesesequencescanfollowanyothersinceotherwisethebasicfeasibilityassumptionsofCramaetal.(2000)statingthattherobotcannotloadanalreadyloadedmachineandcannotunloadanalreadyemptymachinemaybeviolated.Fig.1depictsthefeasibletransitionsfromonesequencetoanother.Nowletusconsideranyn-unitrobotmovecyclewiththeoptimalallocationtype.Initsgenerality,weassumethiscycletocontainatleastoneofthesefourrobotmovesequences.Theallocationoftheoperationsdoesnotaffecttheloading/unloadingandtransportationtimesbutonlyaffectstheprocessingtimeswhichinturnaffectthewaitingtimesoftherobotinfrontofthemachines.LetusfirstanalyzeoneoftheS1cycleswithinthisn-unitrobotmovecycle.UsingFacts1and2aboveweconcludethattheallocationforthiscycledoesnotaffecttheremainingpartofthecycle.Also,asmentionedpreviously,thereisnoallocationproblemforS1cycle,andthewaitingtimeforS1isPþPM1þPM2,independentoftheallocation.WhenweremovetheactivitysequenceA0A1A2,correspondingtoS1fromtheactivitysequenceofthen-unitrobotmovecycle,wegetanewfeasibleðnÀ1Þ-unitrobotmovecycleforwhichtheoptimalallocationfortheremainingpartsdoesnotchange.AssumethatthereareatotalofzS1cycleswithinthen-unitrobotmovecyclewherez¼0;1;...;n.LetTnÀzbethecycletimeofthenewðnÀzÞ-unitrobotmovecycle,sayCnÀz,whichisattainedbyremovingtheactivitysequencesofallS1cycles.Hence,thecycletimeofourn-unitrobotmovecycleis: zÃTS1þðnÀzÞÃTnÀz .Tn¼ n ThisequationstatesthatTnPminfTS1;TnÀzg. NowletusconsiderCnÀz.FromFig.1weseethatbetweentwoS12sequencesoneS21sequencemustbeperformed.BetweenoneS12andoneS21anynumberofS2sequencescanbeperformed.ThuswecanpartitionCnÀzintosub-cycleseachofwhichstartswithS12performsanumberofS2ÕsandendsupwithS21.Furthermore,asstatedasFact1above,theallocationforsuchcyclesdoesnotaffecttheallocationfortheremainingpartofthecycleandisnotaffectedbytheallocationoftheremainingpartofthecycle.Thecycletimeofthewholen-unitrobotmovecycleisaconvexcombinationofthecycletimesofthesesub-cycles.LetTibethecycletimeoftheithsub-cyclewiththeoptimalallocationtypethen,clearly,TnÀzPminifTig.Henceforth,TnPminfTS1;minifTigg. NowletusconsideranysuchcyclewhichstartswithS12,performsatotaloflS2Õsl¼0;1;...andendsupwithS21.Notethatthisisanðlþ2Þ-unitcycle.LetusrepresentthiscycleasS12ðlÀS2ÞS21.Sinceineverycycleeachmachineisloadedandunloadedanequalnumberoftimes,theaverageloading/unloadingtimetoproduceonepartforallcyclesareequaltoeachother,namely,6.RepeatingcycleS2ltimesrequiresatotalof8ld.RepeatingS12onetime,whichhasanactivitysequenceofA0A1A0,requires5dandthefollowingactivityofthissequencecanonlybeA2whichrequiresanadditionaldtotravelbetweenfinalstateofS12(firstmachine)totheinitialstateofthenextsequence(secondmachine).InasimilarwayrepeatingS21(A2A1A2)onetimerequires5dandanadditional3dtotravelbetweenthelaststateofS21(outputbuffer)toinitialstateofthefollowingsequencewhichmuststartwithactivityA0(inputbuffer).ThentheaveragetraveltimetoproduceonepartwiththecycleS12ðlÀS2ÞS21is: 6dþ8ldþ8d8lþ14 ¼d. lþ2lþ2 Thelastcomponentinourcycletimerepresentationsisthetotalwaitingtimeoftherobotinfrontofthemachines.Wecanfindthewaitingtimeasfollows:AssumeforthecycleS12ðlÀS2ÞS21usingkallocationtypesisoptimalandconsiderthespecificallocationrk.Thefirstpartwillbeproducedaccordingtothecycle H.Gultekinetal./EuropeanJournalofOperationalResearch174(2006)777–796795 S12whichimpliesafullwaitingtimeinfrontofthefirstmachine:PM1þP1ðrkÞ,andwillbeprocessedaccordingtoS2onthesecondmachinewhichmeansapartialwaitingtimeinfrontofthesecondmachine:w21¼maxf0;PM2þðPÀP1ðrkÞÞÀð2þ4dÞg.ThenextlpartswillbeprocessedaccordingtoS2cycleonbothmachines.Thepartialwaitingtimeforthesecondpartonthefirstmachineis:w12¼maxf0;PM1þP2ðrkÞÀð2þ4dþw21Þg.Thenwehave: w12þw21¼maxf0;PM1þP2ðrkÞÀð2þ4dÞ;PM2þðPÀP1ðrkÞÞÀð2þ4dÞg.Proceedinginthesamewayforallparts,totalwaitingtimetoproducel+2partsis:PM1þPM2þP1ðrkÞþðPÀPðlþ2ÞðrkÞÞ þmaxf0;PM1þP2ðrkÞÀð2þ4dÞ;PM2þðPÀP1ðrkÞÞÀð2þ4dÞgþmaxf0;PM1þP3ðrkÞÀð2þ4dÞ;PM2þðPÀP2ðrkÞÞÀð2þ4dÞgþmaxf0;PM1þP4ðrkÞÀð2þ4dÞ;PM2þðPÀP3ðrkÞÞÀð2þ4dÞgþÁÁÁþmaxf0;PM1þPðlþ1ÞðrkÞÀð2þ4dÞ;PM2þðPÀPlðrkÞÞÀð2þ4dÞgþmaxf0;PM1þPðlþ2ÞðrkÞÀð2þ4dÞ;PM2þðPÀPðlþ1ÞðrkÞÞÀð2þ4dÞg. IntheaboveequationletusinsertP1(rk)andðPÀPðlþ2ÞðrkÞÞintothefirstandlastmaxtermsrespectively.Bythischangeallothermaxtermsremainthesamebutthesetwobecome: maxfP1ðrkÞ;PM1þP2ðrkÞþP1ðrkÞÀð2þ4dÞ;PM2þPÀð2þ4dÞg and maxfPÀPðlþ2ÞðrkÞ;PM1þPÀð2þ4dÞ;PM2þðPÀPðlþ1ÞðrkÞÞþðPÀPðlþ2ÞðrkÞÞÀð2þ4dÞg. Ã UndertheoptimalallocationwemusthaveP1ðrÃkÞ¼0andPðlþ2ÞðrkÞ¼P.ThismeansforthefirstpartallocatingalloperationsthatareinsetOtothesecondmachineandforthelastpartallocatingthemtothefirstmachine.Furthermore,sinceweassumedthatPM1PPM2,lettingPðlþ1ÞðrÃkÞ¼0doesnotchangethecycletime.Asaresultofthese,thelastmaxtermoftheaboveequationbecomes: maxf0;PM1þPÀð2þ4dÞ;PM2þPÀð2þ4dÞg¼maxf0;PM1þPÀð2þ4dÞg. Afterincludingtheloading/unloadingandtraveltimes,thecycletimeofS12ðlÀS2ÞS21underoptimalallocationrÃkbecomes: 6þ ð14þ8lÞ1 dþðPM1þPM2Þ ðlþ2Þðlþ2Þ ðB:1ÞðB:2ÞðB:3ÞðB:4ÞðB:ðlþ1ÞÞðB:ðlþ2ÞÞ M2 þ1=ðlþ2Þðmaxf0;PM1þP2ðrÃþPÀð2þ4dÞgÞkÞÀð2þ4dÞ;P M2þ1=ðlþ2Þðmaxf0;PM1þP3ðrÃþðPÀP2ðrÃkÞÀð2þ4dÞ;PkÞÞÀð2þ4dÞgÞM2þ1=ðlþ2Þðmaxf0;PM1þP4ðrÃþðPÀP3ðrÃkÞÀð2þ4dÞ;PkÞÞÀð2þ4dÞgÞþÁÁÁ þ1=ðlþ2Þðmaxf0;PM1Àð2þ4dÞ;PM2þðPÀPlðrÃkÞÞÀð2þ4dÞgÞþ1=ðlþ2Þðmaxf0;PM1þPÀð2þ4dÞgÞ. LetWðS12S21Þrepresentthewaitingtimeoftwo-allocationforcycleS12S21withoptimalallocationrÃk, M11 whichinEq.(3)wasfoundtobe:WðS12S21Þ¼2ðmaxf0;PþPÀð2þ4dÞgÞ.Then,the(B.(l+2))ndcom-2 ponentintheaboverepresentationisðlþWðS12S21Þ.Considerlines(B.2)–(B.(l+1))above.Theysharethe2Þsamepatternasthewaitingtimecomponentcorrespondingtoanl-allocationtypeforthecycleS2in(A.4).LetWðS2Þbethiswaitingtimecomponentin(A.4)whenweplugintherespectiveallocationsfrom(B.2)– l (B.(l+1)).Thesummationofthecomponents(B.2)–(B.(l+1))isthenlþWðS2Þ.Inconclusion,2796H.Gultekinetal./EuropeanJournalofOperationalResearch174(2006)777–796 TS12ðlÀS2ÞS21¼ 2ð6þ7dþP M1þPM2 2þWðS12S21ÞÞþlð6þ8dþWðS2ÞÞ . lþ2 Inparticular,thecycletimeofS12ðlÀS2ÞS21isaconvexcombinationofthecycletimesoftwo-allocationforS12S21andl-allocationforS2.Clearly, TS12ðlÀS2ÞS21PminfTS2ðoptÞ;TS12S21ðoptÞg. Finally,wehavemanagedtoshowthatthecycletimeofthen-unitcyclewestartedoutwith,TnPminfTS1;TS2ðoptÞ;TS12S21ðoptÞg.h References Brauner,N.,Finke,G.,1997.FinalResultsontheOne-cycleConjectureinRoboticCells.Internalnote,LaboratoireLEIBNIZ, InstitutIMAG,Grenoble,France. Crama,Y.,vandeKlundert,J.,1997.Cyclicschedulingofidenticalpartsinaroboticcell.OperationsResearch45,952–965.Crama,Y.,vandeKlundert,J.,1999.Cyclicschedulingin3-machineroboticflowshops.JournalofScheduling4,35–54. Crama,Y.,Kats,V.,vandeKlundert,J.,Levner,E.,2000.Cyclicschedulinginroboticflowshops.AnnalsofOperationsResearch96, 97–124. Dawande,M.,Geismar,H.N.,Sethi,S.P.,2002a.Dominanceofcyclicsolutionsandchallengesintheschedulingofroboticcells. Workingpaper,UniversityofTexasatDallas,toappearinSIAMReview. Dawande,M.,Sriskandarah,C.,Sethi,S.P.,2002b.Onthroughputmaximizationinconstanttravel-timeroboticcells.Manufacturing andServiceOperationsManagement4,296–312. Dawande,M.,Geismar,H.N.,Sethi,S.P.,Sriskandarajah,C.2003.Sequencingandschedulinginroboticcells:Recentdevelopments. Workingpaper,UniversityofTexasatDallas,toappearinJournalofScheduling. Garey,M.G.,Johnson,D.S.,1976.ComputersandIntractability:AGuidetotheTheoryofNP-completeness.W.H.Freeman. Gray,A.E.,Seidmann,A.,Stecke,K.E.,1993.Asynthesisofdecisionmodelsfortoolmanagementinautomatedmanufacturing. ManagementScience39,549–567. Hall,N.G.,Kamoun,H.,Sriskandarajah,C.,1997.Schedulinginroboticcells:Classification,twoandthreemachinecells.Operations Research45,421–439. Hall,N.G.,Kamoun,H.,Sriskandarajah,C.,1998.Schedulinginroboticcells:Complexityandsteadystateanalysis.European JournalofOperationsResearch109,43–65. King,R.E.,Hodgson,T.J.,Chafee,F.C.,1993.Robottaskschedulinginaflexiblemanufacturingcell.IIETransactions25,80–87.Kise,H.,Shioyama,T.,Ibaraki,T.,1991.Automatedtwo-machineflowshopscheduling:Asolvablecase.IIETransactions23,10–16.Miller,R.K.,Walker,T.C.,1990.FMS/CIMSystemsIntegrationHandbook.TheFairmontPress,Lilburn,GA. Sethi,S.P.,Sriskandarajah,C.,Sorger,G.,Blazewicz,J.,Kubiak,W.,1992.Sequencingofpartsandrobotmovesinaroboticcell. InternationalJournalofFlexibleManufacturingSystems4,331–358. Sriskandarajah,C.,Hall,N.G.,Kamoun,H.,1998.Schedulinglargeroboticcellswithoutbuffers.AnnalsofOperationsResearch76, 287–321. 因篇幅问题不能全部显示,请点此查看更多更全内容