1.
样本: 样本 从总体中抽出的若干个体所构成的集合称为样本. 之阿布丰王创作
2. 时间:二O二一年七月二十九日 3. 总体: 总体 指具有相同性质的个体所组成的集合称为总体.
4. 5.
连续变量:暗示在不变量范围内可抽出某一范围的所有值. 非连续变量:也称为离散型变量,暗示在变量数列中,仅能取得固定命值,而且通常是整数.
6.
准确性:指在调查或实验中某一试验指标或形状的观测值与真值接近的水平.
7.
精确性:指调查或实验中同一试验指标或形状的重复观测值彼此接近水平年夜小.
8.
资料:指在一定条件下,在生物学实验和调查中,能够获得年夜量原始数据,对某种具体事务或现象观察的结果.
9.
数量性状资料:指一般是由计数和丈量或怀抱获得的.
10. 质量性状资料:是指对某种现象只能观察而不能丈量的资料,
也称属性资料.
11. 计数资料;指由计数获得的数据. 12. 计量资料:有丈量或怀抱获得的数据.
13. 普查:指对研究对象的每一个个体都进行丈量或怀抱的一种
全面调查.
14. 抽样调查:是一种非全面调查,它是根据一定的原则对研究
对象抽取一部份个体进行丈量或怀抱,把获得抽样调查的数
时间:二O二一年七月二十九日
时间:二O二一年七月二十九日
据资料作为样本进行统计处置,然后利用样本特征数对总体进行推断.
15. 全距(极差) :是指样本数据资料中最年夜观测值与最小
观测值的差值.组中值:是指两个组限下线和上限的中间值.
16. 算数平均数:是指总体或样本资料中哥哥给观测值的总和除
以观测值的个数所得的商.
17. 中位数:是指将试验或调查资料中所有观测值以年夜小顺序
排列,居中位置的观测值.
18. 众数:资料中呈现次数最多的那个观测值或次数最多一组的
中点值.
19. 几何平均数:指资料中有几个观测值,其乘积开几次方所得
的数值.
20. 方差:指用样本容量 n 来除离均差平方和,获得平均的平方
和.
21. 标准差:指方差的平方根和.
22. 变异系数:指将样本标准差除以样本平均数得出的百分比. 23. 概率:指某事件 A 在 n 次重复试验中,发生了几次,当试验
次数 n 不竭增年夜时,事件 A 发生的频率 W(A) 概率 就越来越接近某一确定值 P,于是则定 P 为事件 A 发生的概率.
24. 和事件:指事件 A 和事件 B 至少有一件发生而构成的新事
件称为事件 A 和事件 B 的事件.
时间:二O二一年七月二十九日
时间:二O二一年七月二十九日
25. 积事件:指事件 A 和事件 B 同时发生而构成的新事件,称为
事件 A 和事件 B 的积事件.
26. 互斥事件:指事件 A 和事件 B 不能同时发生,称为事件 A
和事件 B 互斥.
27. 对峙事件:指事件 A 和事件 B 必有一个事件发生,但两者
不能同时发生.
28. 自力事件:指事件 A 的发生与事件 B 的发生毫无关系. 29. 完全事件系:指如果多个事件 A1、A2、、、 、、、An 两
两相斥,且每次试验结果肯定发生其一,则称事件 A1、 完全事件系 A2、、、 、、、An 为一个完全事件系.
30. 概率加法定理: 指互斥事件 A 和 B 的和事件的概率即是
事件 A 和事件 B 的概率之和, P(A+B)=P(A)+P(B).
31. 概率乘法定理:指事件 A 和事件 B 为自力事件,则事件 A
与 B 同时发生的概率即是事件 A 和事件 B 各自概率乘法定理的乘积,即:P(A*B)=P(A)*P(B).
32. 伯努利年夜数定律:设 M 是 n 次自力试验中事件 A 呈现
的次数,而不是事件 A 在每次试验中呈现的概率,则对任意小的正数 ε ,有如下关系:limp{m/n-p< ε }=1
33. 辛钦年夜数定律:是用来说明为什么可以用算术平均数来推
断总体平均数 m 的.
34. 统计推断:指从样本的统计数对总体参数做出的推断,包括参
数估计和假设检验.
时间:二O二一年七月二十九日
时间:二O二一年七月二十九日
35. 假设检验:指根据总体理论分布和小概率原理,对未知或不
完全知道的总体提出两种彼此对峙的假设,然后有样本的实际结果,经过一定的计算,做出在一定概率意义上应该接受的那种假设的推断.
36. 参数估计:指由样本结果对总体参数在一定概率水平下所作
出的估计.
点估计是用样本统计量直接给出总体相应参数的估计值,由于抽样误差存在,X拔分歧的样本将会获得分歧的点估计值,点估计缺乏明确的精度概念,而区间估计在一定水平上可以弥补这个缺乏
37. 小概率原理:指如果假设一些条件,并在假设的条件下能够
准确地算失事件 A 呈现的概率 a 为很小,则在假设条件下的 n 次自力重复试验中时按预定的概率发生,而在有一次试验中则几乎不成能自力.
38. 显著水平:指在无效假设和备择假设后,要确定一个否定 H0
的概率标准,这个概率称为显著水平.
39. 方差同质性:就是指各个总体的方差是相同的.
40. α 毛病 :H0 是真实的,假设检验却否定了它,就烦了一个否
定真实假设的毛病,称为 α 毛病.
41. β 毛病:指如果
H0 不是真实的,假设检验时却接受了 H0,
否定了 HA 这样就犯了接受不真实假设的毛病,称为 β 毛病.
时间:二O二一年七月二十九日
时间:二O二一年七月二十九日
42. 适合性检验:指比力观测值与理论值是否符合的假设检验交
适合性检验.
43. 自力性检验:指研究两个或两个以上因子彼此之间是相互自
力的还是相互影响的一类统计方法.
44. 相关分析:是研究现象之间是否存在某种依存关系, 并对具
体有依存关系的现象探讨其相关方向以及相关水平,是研究随机变量间的相关关系的一种统计方法.
45. 回归分析:是确定两种或两种以上变数间相互依赖的定量关
系的一种统计分析方法.
46. 回归系数:y^=a+bx,自变量 x 改变一个单元,依变量 y 平
均增加或减少的单元数,即回归直线的斜率 b.
47. 回归截距:y^=a+bx,a 是当 x=0 时的 Y^值,即直线在 y
轴上的截距,称为回归截距.
48. 离回归平方和:它反映除去 x 与 y 相关水平和性质的统计
数.
49. 回归平方和:它反映在 y 的总体变异种由于 x 与 y 的直
线关系而发生 y 变异减小的部份.
50. 相关系数:是指通过计算暗示 x 和 y 相关水平和性质的统
计数.
51. 决定系数:是变量 x 引起 y 变异的回归平方和与 y 变异
总平方和的比率.
52. 转换:指估计总体相关系数 p 的置信区间时,需要将 r 转
时间:二O二一年七月二十九日
时间:二O二一年七月二十九日
换成 z.
53. 试验设计:广义的指整个研究课题的设计,包括实验方案的
拟订,试验方案的拟订,试验单元的选择,分组的排列,实验过程中试验指标的现象记载,试验资料的整理,分析等外容.
54. 试验结果重演:是指在相同的条件下,在进行实验或实践,应
能重复获得与原试验结果相近的结果.
55. 处置因素:一般指对受试对象给予的某种外部干预. 56. 主效应:多因素中试验中引起实验结果发生变动的主要. 57. 互作:因素之间的交互作用.
58. 受试对象:是处置因素的客体,实际上就是根据研究目的而
确立的观测总体.
59. 处置效应:是处置因素作用于受试对象的反应,是研究最终
体现
60. 误差:在试验中受偶然影响或者说非处置因素影响使观测值
偏离试验处置真值的不同.
61. 随机误差:由于试验中许多无法控制的偶然因素所造成的试
验结果与真实结果之间发生的误差.
62. 系统误差:由于试验处置以外的其他条件明显纷歧致所发生
的带有倾向性或定向性的偏差
63. 重复:在试验中,同一处置设置的试验单元数.
64. 随机:是指一个重复的某一处置或处置组合被安插在哪一个
试验单元,不要有主观偏见.
时间:二O二一年七月二十九日
时间:二O二一年七月二十九日
65. 均积:是 x 与 y 的平均的离均差的乘积和,简称均积. 66. 协方差:与均积相应的总体参数.
67. 协方差分析:把回归分析与方差分析结合.
68. 试验控制:要提高试验的精确度和灵敏度,必需严格控制试
验条件的均匀性,使各处里处于尽可能一致的条件下.
69. 统计控制:是试验控制的一种辅助手段,是用统计方法来矫正
因自变量的分歧而对依变量所发生的影响.
70. 估计量:估计总体参数的统计量
71. 无偏估计量:如果一个统计量的理论平均数(即数学期望)
即是总体参数,这个统计量就叫无偏估计量
72. 矩估计:用样本矩作为总体矩的估计值
73. 矩估计法(数字特征法、矩法)用样本矩作为相应总体矩的
估计量,也可以用样本数字特征作为相应的总体数字特征的估计量.用矩法获得的估计值,叫据估计值.据发的思想实质是用样本去替换总体矩的原则,称之为替换原则
74. 有
效估计量:设a1,a2是A的两个无偏估计量,若
var(a1)75. 抽样误差:由抽样引起的样本值与总体值之间的不同成为抽 样误差,直接原因:总体中各个体之间存在不同,或重复试验中一些服从某种分布的偶然误差的存在 76. 标注误差(标准误):描述样本平均数摆荡情况的统计量, 就是X拔的方差或标准差,计均数抽样误差为西格玛X拔,= 时间:二O二一年七月二十九日 时间:二O二一年七月二十九日 西格玛/根号n,西格玛X拔就是标准误(差) 77. 估计样本平均数方差:SX78. 估计标准误:SX 拔平方,=S平方/n 拔,=S/根号n 95%)时,预报量可能呈现的 79. 置信区间:到达某一置信度(如 范围(如E(y)±1.96西格玛,这里西格玛是标准差) 置信区间的意义是:反复抽样屡次,每次的样本容量相等,每次的样本值确定一个区间[a1,a2],这个区间包括a的概率是100(1-阿尔法)%,不包括a的概率是100阿尔法% 80. 置信水平(置信度,置信系数,可靠度)是指总体参数值落在 样本统计值某一区内的概率;而置信区间是指在某一置信水平下,样本统计值与总体参数值间误差范围.置信区间越年夜,置信水平越高. 81. 拟合优度检验:对总体分布类型的检验,包括检验观测数与 理论书之间的一致性,通过检验观测数与理论书之间的一致性来判断事件之间的自力性 82. 皮尔逊定理:若 n充沛年夜,则不论总体服从什么分布,卡平 方总是近似服从自由度为m-a-1的卡平方分布 83. 方差分析:能同时判断多组数据平均数之间的不同显著性, 能把随机变异从混杂状态中分离开来,从而为判断因素对实验结果有无确实的影响提供依据 84. 方差分析的前提条件:等方差,正态性、自力性 85. 固定因素:若因素的 a个水平是经过特意选择的,则该因素 时间:二O二一年七月二十九日 时间:二O二一年七月二十九日 为固定因素.发差分析所获得的结论只适合于选定的几个水平,其实不能将其结论扩展到未加考虑的水平上 86. 固定效应模型:处置固定因素所用的模型称为固定效应模型 或固定模型 87. 随机因素:若因素的 a个水平,是从该因素水平总体中随机 抽出的样本,则该因素称为随机因素,从随机因素a个水平所获得的结论,可以推广到这个因素的所有水平上 88. 处置随机因素所用的模型称为随机效应模型 89. 多重比力:对各对均值之间的差此外显著性检验 90. LSD 法在统计推断时犯第一类毛病的概率年夜,而Duncan法 犯第一类毛病的概率小. 91. 多个方差齐性检验(bartlett 检验,巴特氏卡平方检验): 当a个随机样本是从自力正态总体中抽取时,可以计算出统计量K平方,当n=min(nj)充沛年夜时,K平方的抽样分布非常接近于a-1自由度的卡方分布.由此可对多个总体进行卡平方检验. 92. 两因素之间交互作用发生新效应的现象为交互作用 93. 由因素水平的改变而造成的因素效应的改变称为该因素的主 效应 94. 交叉分组设计:假设 A药物有a水平,B药物有b水平,共有 ab个剂量组合,每一组重复n次.共有abn名病人介入实验,这样的实验设计称为交叉分组设计 时间:二O二一年七月二十九日 时间:二O二一年七月二十九日 95. 相关:设有两个随机变量 X和Y,对任一随机变量的每一 个可能的值,另一个随机变量都有一个确定的分布与之相对应,则称这两个随机变量之间存在相关关系 96. 如果变量之间的关系可以用函数关系来表达,就称它们之间 的关系为确定性关系 97. 回归关系、相关关系:统计学上把变量之间的非确定性关系 称为相关关系,也成为回归关系 98. 如果对一个普通变量 x的每一个可能的值xj都有随机变量 Y的一个分布与之对应,则称随见变量Y的一个分布与之对应,则称随机变量Y对x存在回归关系 99. 具有回归关系的两变量之间对任一 xi都不会有一个确切的 yi与之对应,但为了描述两变量之间的数量关系,可选当x=xi时Y的平均数谬角标Y乘X=xi与之相对应,则称谬角标Y乘X是Y的条件平均数 100. Y1,y2…yn这n个数据的离差平方和,记作SYY,称为总离 差平方和,反映了n个yi折的离散水平 101. 回归平方和(y折-y拔)平方求和,几座SSR.是n个yi 折的离差平方和,反映了n个yi折的离散水平 102. 剩余平方和(残差平方和)(yi-yi拔)平方求和,记作 SSe,是除x对Y的线性影响之外的其他剩余因素造成的平方和,这些因素中包括x对Y的非线性影响及试验误差,观察误差等随机因素 时间:二O二一年七月二十九日 时间:二O二一年七月二十九日 103. 相关分析是对两个或两个以上随见变量之间相互关联水平 进行分析的统计学方法 104. 存在于两个随机变量之间的相关关系称为简单相关或单相 关,存在于三个或三个以上变量之间的相关关系为多重相关或复相关 在一元回归中,回归的显著水平,可以用相关系数来暗示,同样,在多元回归问题中,回归的显著水平可以用复相关系数暗示 105. 统计学上把衡量变量之间关系密切水平的统计量称为相关 系数 106. 消除其他变量的影响后两个变量之间的相关关系称为偏相 关(纯相关).为了反映两变量间的真正关系,就要保证在其他变量都坚持不变的情况下,计算它们的相关系数,这时的相关系数称为偏相关系数或纯相关系数 107. 样本平均数作为总体平均数估计值的优良:无偏(均值即 是总体平均数)、有效(方差小雨其他估计值)、一致性(总体平均数为极限值) 108. 概率论中有关论证随机变量的和的分布服从正态分布的一 类定理称为中心极限定理 109. 若X为一随机变量,则F(x)=P(X<=x)为X的分布函数 时间:二O二一年七月二十九日 时间:二O二一年七月二十九日 因篇幅问题不能全部显示,请点此查看更多更全内容