您的当前位置:首页正文

2010 TerraSar-X卫星

2022-02-14 来源:好走旅游网
IEEETRANSACTIONSONGEOSCIENCEANDREMOTESENSING,VOL.48,NO.2,FEBRUARY2010615

TheTerraSAR-XSatellite

WolfgangPitzandDavidMiller

Abstract—TerraSAR-Xisaversatilesyntheticapertureradar(SAR)satellitewithactivephasedarrayantennatechnologyandrepresentsthebackboneoftheGermannationalradarEarthob-servationmission.WithitslargevarietyofdifferentSARimagingmodesanditshighoperationalflexibility,TerraSAR-Xideallyservesthescientificcommunityandusersfromtheindustrialsectorandgovernmentalinstitutions.Theinnovativesatellitesys-temdesigncombinestherichexperiencefrompastGermanandEuropeanSARspacemissionslikeX-SAR,SRTM,ERS1and2,andEnvisatcombinedwithstate-of-the-artEarthobservationbustechnologyasused,e.g.,ontheCHAMPandGRACEsatellites.IndexTerms—SARsatellite,syntheticapertureradar(SAR).

I.INTRODUCTION

EMOTEsensingoftheEarth’ssurfacefromspacebyanactivemicrowaveinstrumentallowsobservationindepen-dentoftimeofdayorcloudcover.Thesyntheticapertureradar(SAR)principleanddevelopmentofkeytechnologiesinspacequalityhaveallowedtosteadilyimprovegeometricresolutionandradiometrysensitivity.

EuropeanspaceborneSARprogramsstartedinthe1980swiththeERS-1satellitecarryingapassiveC-bandantenna.TheX-SARinstrumentastheGermancontributiontotheNationalAeronauticsandSpaceAdministration’sSpaceShuttlemissionsSIR-C/X-SARandtheShuttleRadarTopographicMission(SRTM)followed.Improvedoperationalflexibility,increasedimageresolution,andthetopographicinformationcontentprovidedbythisfirstspaceborneinterferometerim-pressivelydemonstratedthecapabilitiesofX-bandspaceborneradar.ThisexperimentestablishedthebasisforasuccessfulGermanX-bandSARprogramtodevelopkeytechnologiesformodernphasedarrayantennas.ThetechnologydemonstratorofanactivephasedarraySARantenna(DESA),developedintheearly1990s,becamethekeyelementoftheactiveantennaofTerraSAR-X(Fig.1).

TheTerraSAR-Xsatelliteisafurthersteponthepathofincreasingperformanceandalsoprovidesauniqueflexibleser-vicetousers,allowingthedevelopmentofnewSARmethodsandawiderangeofapplications.TheTerraSAR-Xmissionprovides2-DEarthsurfaceimagingwithgeometricresolutiondownto1mandnoiseequivalentsigmazerobelow−19dB.InaformationflighttogetherwithitsfuturepartnerTanDEM-X,

R

Fig.1.TerraSAR-XS/C.

3-DimagingofthecompletelandmassoftheEarthwillbeperformedwithaheightresolutionof2m.

ThispapertreatsthedesignandperformanceofthebusandtheSAR(SectionII),theadditionalpayloads(SectionIII),andsatelliteprelaunchtesting(SectionIV).SectionVdescribesthecurrentin-orbitstatusofTerraSAR-X.Then,SectionVIgivesanoutlookontheTanDEM-Xsatelliteandmission.

II.DESIGNANDPERFORMANCE

A.SpaceSegment

ThetechnologicalfoundationsoftheTerraSAR-Xspaceseg-mentdesignwerelaidinthefinaldecadeofthelastmillenniumwiththesuccessfulSpaceShuttlemissionsX-SAR[1]andSRTM[2],[3]regardingtheradarinstrumentandwiththelowEarthorbit(LEO)sciencemissionsCHAMP[4]andGRACE[5]forthesatellitebus.

Furthermore,theGermanAerospaceCenter(DLR)fundedtechnologystudieswhichplayedanindispensableroleinthereductionofriskconnectedwiththeintroductionofnewSARtechnologiesappliedonTerraSAR-X.OfkeyimportancewastheDESA(X-bandSARAntennaDemonstrator)study,whereaprequalificationmodelofoneofthe12TerraSAR-Xantennapanelswassubjectedtorigorousfunctionalandperformancetesting,andtheTOPAS(TechnologyDevelopmentforOnboardSARProcessingandStorageDemonstrator)study,wherenovelSARdataonboardprocessingandstoringtechniqueswereinvestigatedandprequalified.Onthebasisofthisrichheritage,itwaspossibletorealizeanefficientdesignwhichoffersanexcellentperformance-to-costratio.

TheTerraSAR-Xspacesegmentwasoptimizedforopera-tioninLEOinkeepingwiththerequiredradarperformanceandtechnologycapability(themissionorbitcharacteristicsarelistedinTableI)andiscompatiblewithawiderangeoflaunchersduetoitscompactshapeandlowmass.

ManuscriptreceivedMarch18,2009;revisedJuly21,2009andOctober19,2009.CurrentversionpublishedJanuary20,2010.

TheauthorsarewithAstriumSatellites,88039Friedichshafen,Germany(e-mail:wolfgang.pitz@astrium.eads.net;david.miller@astrium.eads.net).Colorversionsofoneormoreofthefiguresinthispaperareavailableonlineathttp://ieeexplore.ieee.org.

DigitalObjectIdentifier10.1109/TGRS.2009.2037432

0196-2892/$26.00©2010IEEE

616IEEETRANSACTIONSONGEOSCIENCEANDREMOTESENSING,VOL.48,NO.2,FEBRUARY2010

TABLEI

TerraSAR-XMISSIONORBIT

Fig.2.ZenithsideoftheS/Cshowingthesolararray.

Fig.3.RightsideoftheS/C.

Thehexagonaloutershapeofthespacecraft(S/C)efficientlyfitstheshapeofatypicallauncherfairing.Thebody-mountedsolararrayisseenontheleftinFig.2.TheradarantennaisseenontherightinFig.3.Themajorityoftheelectronicunitsare

accommodatedontheoutsideofthebasicstructuralhexagon,whichallowseasyaccessduringintegrationandtest.Themaindimensionsare4880mminlengthand2400-mmmaximumwidth.Innominalflightattitude,theSARantennaoff-nadirangleamountsto33.8◦.Theextensiveuseoflightweightcarbonfiber-reinforcedplastic(CFRP)technologyinasatellitestruc-tureandaSARantennaleadstoalowoverallwetmass(i.e.,includingfuel)ofabout1350kg,includingadditionalpayloads.AllsystemsonTerraSAR-Xaresinglefailuretolerant,andthereliabilityfigure(i.e.,predictedprobabilityofmaintainingtherequiredfunctionality/performance)is0.8after5.5yearsofnominalmissionlifetime.B.SatelliteBus

ThemainsystemperformancecriticaltasksoftheTerraSAR-XsatellitebusaretoprovidetheSARinstrumentwithsufficientenergyandprecisepointingandalsotomaintainastableorbitandadequatethermalconditions.

TheonboardcomputerincludesaprocessormodulebasedontheERC32-MCM(thehighlyintegratedmultichip-moduledevelopmentoftheradiation-tolerant32-bitSPARCV7micro-processor)whichprovides>10millioninstructions/scomput-ingspeed.

Electricalpowerisgeneratedbymeansofa5.25-m2largeGaAstriple-junctionsolararray,storedina108-Ah(begin-of-life)Li-ionbatteryanddistributedovera50-Vdcmainbussys-tem.Underworstcaseseasonalandend-of-lifecircumstancesandassumingasolararraystringfailure,theavailablepowerisstillsufficientforaminimumSARinstrumentoperationof170s/orbitinaverage,with10%margin.However,apartfromasmallregionaroundsummersolstice,whereeclipseswithamaximumdurationof22.4minareexperienced,electricalenergyisabundantsothatSARimagingofupto10min/orbitistypicallypossible.

High-precisionsatellitepointingcontrolanddeterminationareachievedonthebasisofstartrackerslocatedclosetotheSARantennaplanesothatanantennaboresightpointingaccuracyof65arcsec(3σ)isreached.NominalattitudecontrolfollowsanoveltotalzeroDopplersteeringlawdevelopedbyDLR[6].Preciseorbitdetermination(POD)isperformedwithatwo-frequencyGPSreceiverandrawdatapostprocessingonground,whichallowsfororbitrestitutionaccuraciesinthecentimeterrange[7].Asetofhigh-torquereactionwheelsenablesrapidrotationintotheso-calledsunside-looking(SSL)orientation(wherebytheSARlookstotheleftsideofthesubtrack)whichisusedtoimproveaccessofhigh-priorityimagingtargets.InordertopointtheSARantennaintotheSSLdirection,arollmovementof67.6◦isnecessary,whichisachievedinlessthan180s.

Thesatellitebusisequippedwithamonopropellanthy-drazineblowdown-modepropulsionsystemfororbitmain-tenanceandsafe-modeattitudecontrol.Atotalof78-kgpropellantloading,providingadeltav(totalthrust)of105m/s,issufficientforalmosttenyearsofoperation,enablingthesatellitetobekeptwithina±250-morbittubeduringtheentirelifetoallowforrepeat-passSARinterferometry.Theattitudeandorbitcontrolsystemiscompletedbysensorsto

PITZANDMILLER:TERRASAR-XSATELLITETABLEII

BASICSARMODEPERFORMANCE

determineattitude(coarseEarthandsunsensor)andattituderates(inertialmeasurementunitandmagnetometer)andalsoamagnet-torqueractuatorforattitudecontrol.

Regardingthermalcontrol,acombinationofmultilayerinsu-lation,radiatorfoils,andsoftware-controlledheatersguaranteesalow-variationtemperatureenvironmentoverallseasons,satel-litemodes,andorientations.Allperformance-sensitiveradarelementsaccommodatedwithinthesatellitebusarecloselythermallyconditionedusingfoilheaterswithinarangeoflessthan1K.

CommandandcontrolofthesatelliteareperformedinanencryptedwaysupportedbyanS-bandtelemetry,tracking,andcommandsystematdataratesof4kb/sforuplink,32kb/sforreal-timehousekeeping(HK)downlink,and1Mb/sforHKdumpdownlink.SARdataaretransmittedtothegroundwithanX-bandsystematanetdatarateof270Mb/s.TheX-banddownlinkantennaismountedona3.3-m-longdeploy-ableboom—theonlymechanismonthesatellite—inordertopreventinterferencewiththeX-bandSARinstrument.ThisconceptenablesforsimultaneousSARdataacquisitionanddatadownlink.

Thebusunitsaregenerallyredundanttoprovidetolerancetoanysinglefailure.Somehardwareis“hot”redundant(i.e.,constantlyactivated)forfastreactionorotherreasons.C.SARInstrument

ThekeycharacteristicfeatureofTerraSAR-Xistheadvancedhigh-resolutionX-bandSARbasedonactivephasedarraytechnology.ThespecifiedperformanceparametersforeachofthethreebasicSARmodes,namely,spotlight,stripmap,andScanSAR,arepresentedinTableII.

1)SARAntenna:TheSARcenterfrequencyis9.65GHz,andthebandwidthisselectableuptoamaximumof300MHz.TheSARantennaiscapableofoperationintwopolarizations,namely,HandV,andconsistsof12panelseachwith32slottedwaveguidesubarrays.Everysubarrayisequippedwith

617

Fig.4.TerraSAR-XsubarraywithTRM.

Fig.5.TerraSAR-Xantennapanel.

atransmit/receivemodule(TRM),whichtotalsto384TRMsforthecompleteSARantenna.Fig.4showsaviewofasingleactivesubarray(gluedpairofHandVslottedwaveguideswithitsTRM).Fig.5showsanintegratedantennapanel(arrayof32activesubarrayswithsignaldistributionnetworksandpowerconditioners).

Theapproximatedimensionsoftheantennaare4800mminlength,800mminwidth,and150mmindepth.Thebeamsteeringcapabilityis±0.75◦inazimuthand±20◦inelevation.Ahighlyefficientthermalconditioningsystemguaranteeslowtemperaturegradientsovertheantennasurfaceandalowtem-poralheat-upgradient.Duetothisfeature,continuousimagingtimesofupto10minarepossiblewithoutoverheatingtheantenna.AdvancedCFRPtechnologyisusedforthesubarrays,whichalmostcompletelypreventsthermomechanicaldistor-tionsontheantenna.(See[8]fordetails.)TheTRMsarepoweredbyanacbussystemwhichupconvertsthe50-Vdcofthemainbusinto115V/30kHzac.Theacvoltageisthendistributedtoeachantennapanel,where,onpanellevel,itisdownconvertedandrectifiedtosupplytheTRMswiththenecessaryvoltages.

2)InstrumentUnits:TheantennabeamisdeterminedbythecentralantennacontrolelectronicsunitwhichprovideseachTRMviaadatabussystemwithamplitude,phase,andpolarizationsettinginformationforeachradarpulse.Alargevarietyofpulseformsandbandwidthscanbecreatedduetothefreelyprogrammabledigitalchirpgenerator.Anextensive

618IEEETRANSACTIONSONGEOSCIENCEANDREMOTESENSING,VOL.48,NO.2,FEBRUARY2010

calibrationnetworkcoveringvirtuallyallradio-frequency(RF)pathswithintheinstrumentuptotheTRMsservesasessentialbasisforin-flightsignalcalibration.TheSARdatageneratedbytheinstrumentcanbecompressedfollowinganonlineblockadaptivequantizerschemewithselectableratiosof8:6,8:4,8:3,or8:2beforetheyarestoredinthesolid-statemassmemoryunitwith384-Gbbegin-of-lifeand256-Gbend-of-lifecapacity.Receive,transmit,andcalibrationsignalpathsoftheradarelectronicsandtheantennaarecross-strappedbymeansofare-dundancynetwork.Theinstrumentelectronicsandredundancynetworklayoutalsoallowsforoperationinthedual-receiveantennamode,wheretheechoesreceivedbyindividualazimuthantennahalvescanbeseparatedduringgroundprocessing.Thisfacilitatesalong-trackinterferometryandfull-polarimetricdataacquisition[9],[10].

3)InternalCalibration:TheSARdesignincludesanin-ternalcalibrationschemewherebytransmitsignalsareroutedintothereceivertoallowmonitoringofamplitude/phaseduringoperation(eitherduringon-groundtestingorinorbit).Thisschemeproducesdatawhichcanbeusedbygroundprocessingforradiometricand/orphasecorrectionoftheimagedata.

Theinternalcalibrationrouteisnotexactlythesameasthenominalradartransmit/receivepath.Ontheonehand,someelementsofthetransmit/receivepatharenotfullycovered,e.g.,theinternalcalibrationsignalsarecoupledoutatthefront-endTRMs(transmitsignaltowardsubarrays),henceundergoadifferentpaththantheradarsignalitself.Ontheotherhand,someelementsoftheinternalcalibrationpatharenotpartofthenominalradarpath,e.g.,theaforementionedinternalcalibrationsignalsareroutedbacktotheRFelectronicsviadedicatedcoaxialcables.

Temperaturevariationsofthoseelementswhicharenotfullycoveredbyorspecifictotheinternalcalibrationloopsresultininstabilitieswhichcannotbecorrectedbyusingtheinternalcalibrationdata.On-groundmeasurements(i.e.,characteriza-tion)oftheseelements(viz.,amplitudeandphasevariationwithfrequencyandtemperature)allowasecondlevelofcorrectioninthegroundprocessing.

Fig.6showstheresultsofon-groundverificationoftheinternalcalibrationscheme:blueforpower–gainproductde-terminedbyinternalcalibration,redforpower-gainproductdeterminedusinganexternalstimulus,andtheirdifference(inblack)foroperationusinginternalcalibrationevery60sanddeactivationoftheTRMautomatictemperaturecompensationinbetween.(See[11]fordetails.)Thesmoothdriftallowstheaccurateinterpolationoftheinternalcalibrationmeasure-ments.Thisverificationprovestheperformanceoftheinternalcalibrationschemewithasingleantennapanel.Thisschemethencanbeused(withoutexternalequipment)forperformanceverificationduringthermal-vacuumtestingwiththecompleteantennaand,basedonthissuccessfulverification,duringin-orbitoperationtoensureradiometricstability.

III.ADDITIONALPAYLOADS

A.LCT

TheLaserCommunicationTerminal(LCT)isanexper-imentalpayloaddevelopedandbuiltwithfundingfrom

Fig.6.TerraSAR-Xtestresultforradaramplitudestability.

DLR/BundesministeriumfürBildungundForschung(BMBF)underleadershipoftheindustrialprimecontractorTesat-SpacecomwithmajorcontributionsfromEADSAstriumandZeissOptronik[12].ThemainaimoftheLCTexperimentistodemonstratethefeasibilityoflaser-basedcommunicationbetweensatellitesindifferentorbitsathighdatarates.Forthispurpose,theLCTonTerraSAR-Xwasusedinafirstverifica-tionsteptotransmitSARdatatoaground-basedterminalataspeedof5.625Gb/susinga1064-nmdiode-pumpedsolid-statelaser.

Inafurtherverificationstep,anintersatellitelink(ISL)wasestablishedwiththeU.S.MissileDefenseAgency’sNearFieldInfraredExperimentsatellite.TheLCTwasthefirstlasercommunicationsysteminspaceoperatingonacoherentbasiswithahomodynedigitalreceiverandbinaryphase-shiftkeyingmodulation.Theopticaloutputpower−ranges8between0.5and1.0W,andthebiterrorrateisbelow10foradistanceofupto8000kmandbelow10−4forthelinkthroughtheatmosphere.TheLCTisaccommodatedontheantisunsideofTerraSAR-XtoguaranteeafreehemisphericalfieldofviewwhichalsoincludestheEarthsurface.Theterminalconsistsofonephysicalunitwithamassofapproximately33kgandanaveragepowerconsumptionof136W,functionallydividedintoanopticsunitincludingacoarsepointingmechanism,atelescope,afinepointerandareceiver,andaframeunitcontainingtheelectronics.Forthermalcontrolreasons,theLCTissupportedbyaheatpiperadiatorwithanareaof0.57m2andaweightofapproximately10kg.DuetotheabundantTerraSAR-Xenergymargin,theLCTcanbeoperatedsimul-taneouslywithSARimagingduringmostoftheyear.B.TOREquipment

TheTracking,Occultation,andRanging(TOR)equipmentisfurnishedbyGeoForschungsZentrum,Potsdam,Germany,

PITZANDMILLER:TERRASAR-XSATELLITETABLEIII

VIBRATIONTESTLOADS

andtheCenterforSpaceResearchoftheUniversityofTexasinAustin,USA,withcofundingfromDLR/BMBF.TheTORinstrumentpackageconsistsoftheredundantdual-frequencyGPStrackingreceiversystemIGOR(integratedglobalnaviga-tionsolutionsystemandoccultationreceiver)andalaserretroreflectorset(LRR)[13].TheIGORisanenhancementoftheBlackJackreceiver,incorporating,e.g.,additionalreceivefilter-ingtoavoidSARinterferenceandhi-relpartswherepossible.TheGPStrackingdataacquiredbyIGORarethebasisforPODprocessingonground.Orbitproductswithaccuraciesof<2minposition,tobeusedforSARimageprocessingandgeolo-cation,aremadeavailablewithinashorttimeframe,whichistypicallylessthan24h,afterreceptionofIGORdataonground.AfurtherTORmissionobjectiveistocollectatmosphericandionosphericradiooccultationdatawithIGOR,whichareusedfortheimprovementofweatherforecastandforclimaticstudies.TheLRRisapassiveopticaldeviceenablingforpreciselasertrackingfromground,supportedbytheglobalnetworkoflasertrackingstationsoftheInternationalLaserRangingSer-vice.TheLRRonTerraSAR-XallowsfororbitdeterminationaccuraciesinthecentimeterrangeandhasmainlybeenusedtoindependentlyverifythequalityoftheonboardGPStrackingdata.ThetotalweightoftheTORpackageislessthan10kg,anditspowerconsumptionisbelow17Winaverage.IV.TERRASAR-XPRELAUNCHSATELLITETESTINGTheTerraSAR-Xsatellitewassubjectedtoaclassicalsystemenvironmentaltestcampaignofthefollowing(insequence):1)massproperties;2)separationshock;3)vibration;4)boomrelease;5)thermalbalance/thermalvacuum(TB/TV);6)elec-tromagneticcompatibility;and7)acousticnoisetesting.Alltestswereperformedoveraperiodofaboutthreemonthsinsummer2006attheIndustrieanlagen-BetriebsgesellschaftmbHfacilityinMunich.A.VibrationTesting

Thevibrationtestdemonstratedthesatellite’scapabilitytowithstandthedynamicloadenvironmentduringthelaunchandverifiedthestiffnessrequirementsimposedbythelauncher.Thetestprogramconsistedforeachofthethreemajorgeometricalsatelliteaxesofalow-levelsinesweeptodeterminethefirsteigenfrequency,followedbyanacceptancelevelrunwithloadsasshowninTableIII.Itwasconcludedbyafurtherlow-level

619

Fig.7.TerraSAR-Xvibrationtest.

sinesweeptoverifytheintegrityofthestructure.Fig.7showsthesatelliteonthevibrationshaker.B.TB/TVTesting

TheTB/TVtest,whichincludedthesimulationofsolarandEarthradiation,demonstratedthesuitabilityofthethermaldesignandtheproperfunctionoftheoverallsysteminvacuumunderextremetemperatureconditions.TheoveralldurationoftheTB/TVtestwastendays,subdividedintoahottestingperiodwithtypicalsatelliteinternaltemperaturesabove30◦Candacoldtestingperiodwithtypicalinternaltemperaturesbelow−10◦C.Formostofthetestduration,thevacuumqualitywasbetterthan10−6mbar.TheTB/TVtestalsoincorporatedSARinstrumenttestswithradiatingSARantenna,whichwereveryusefultoverifythepredictedheat-upbehaviorofthecompleteantennaduringatypicalSARdatatakeinspace.Forthispurpose,theTVchamberhadbeenequippedwithavacuumproofRFdampingmaterial.Fig.8showsthesatelliteinsidethevacuumchamberbeforeclosure.Earthradiationissimulatedbytemperature-controlledEarthsimulatorpanelsandthethermalspaceenvironmentbyLN2-cooledshrouds,placedaroundthetestchamberwalls.Thesunsimulatorbeamentersthechamberfrombelow,isreflectedbyamirroratthefarendofthechamber,andilluminatesthesatellitesolararray.

V.TERRASAR-XIN-ORBITSTATUS

TheTerraSAR-XS/CwaslaunchedonaDneprrocketfromBaikonurinKazakhstanonJune15,2007.TheS/Cisworkingnominally,andexcellentimagesarebeingcontinuouslypro-ducedongroundfromthedownlinkedradardata.Allredundanthardwareisavailableexceptforone(of384)antennaTRM

620IEEETRANSACTIONSONGEOSCIENCEANDREMOTESENSING,VOL.48,NO.2,FEBRUARY2010

Fig.8.TerraSAR-XTB/TVtest.

Fig.9.TerraSAR-Xfuelconsumption.

whichwasdeactivatedbeforethelaunchfollowinganomaloustelemetrydata.

ThereisagoodstatusofconsumablesandpredictionsthatshowthatthisfitstheplanningfortheTanDEM-Xmission.Fig.9showsthefuelconsumptionsincelaunchcomparedtoanassumedlineardecreaseover6.5years:Green/redindicatesafuelstatushavingmore/lessthanthelinearassumption,respec-tively.AradiationupsetinApril2008didleadtounexpecteduseoffuel,butasoftwareimprovementsolvedtheproblem.Inthemeantime,thereisapositivefuelbudget.

Theconditionofthebatteryisconstantlymonitoredbycheckingthatitsvoltageduringoperationdoesnotdroptoolowandapproachthelevelwhereanautomaticonboardreactionwouldoccur.Everyyear,adedicateddatatakeisperformedtoprovidedatatoallowpredictionoftheremainingcapacity.Fig.10showstheresults.Thesolidcurveistheoriginal(atlaunch)prediction;thedashedcurveistheupdatedprediction;today,about84%oftheoriginalcapacityisstillavailable.

VI.TANDEM-XOUTLOOK

TheTanDEM-Xmissionbecameavisionduringthedevel-opmentoftheTerraSAR-Xsatellite.TheTanDEM-Xmission

Fig.10.TerraSAR-Xbatterycapacity.

istheparalleloperationofasecondsatelliteincloseformationtocollectradarinterferometricdatatoderiveaglobaldigi-talelevationmodel(DEM)ofthecompleteEarthlandmass.ThisneededaminimumextensionoftheSARdesignonTerraSAR-Xtosupportthesynchronizedoperationofbothradars.Forthebus,theapproachwasconstrainedbyonlyallowingsoftwarechangesonTerraSAR-X.ThebusdesignonTanDEM-Xwasextendedtoallowformationflightofbothsatellites.ThesoftwarechangesaretobeverifiedduringtheTanDEM-Xon-groundtestsanduplinkedtoTerraSAR-Xinpreparationfortheformationflight.TanDEM-Xiscurrentlyundertest,anditslaunchisplannedattheendof2009toallowthree-yearlifetimeoverlapwithTerraSAR-X.Formoredetails,see[14]–[17].

Anadditionalpropulsionsystembasedonhigh-pressurenitrogengasisaccommodatedonTanDEM-X.Thiscoldgassystemprovidessmallerimpulsesthanthehydrazinesys-temonbothsatellites(whichisusedfororbitmaintenance)andsupportsformationflyingbyfineorbitcontroloftheTanDEM-Xsatellite.

TheTerraSAR-Xinstrumentwasequippedwithfeaturesre-quiredforpulserepetitionfrequencyandphasesynchronizationbetweenthetwosatellites.PhasesynchronizationisfacilitatedbyexchangeofradarpulsesbetweenbothSARs—theso-called“sync”pulses.Sixhornantennasoneachsatelliteprovidequasi-omnidirectionalcoverage,asshowninFig.11.Theredconessymbolizethepointingdirectionsoftherespectivehornantennas.Theiraccommodationwasheavilyconstrainedbythelauncherenvelope.Measurementswithsimulatedrepresenta-tiveblockageweremadetoconfirmsatisfactoryantennafieldofview.

ForDEMdatacollection,formationflightisnecessarywithseparationsdowntoabout300m.Thisinfersriskofcollisionofthesatellitesandriskofmutualilluminationbythemainbeamsoftheradarantennas.Anumberofmechanismshavebeenintroducedonbothsatellitestosafeguardagainsttheserisks.1)Anadditionalsafemodeusingmagnettorquerstoavoidchangeinaltitudeinthecaseofaradiationupsetwhichcouldleadtoriskofcollision.

2)AnexclusionzonelogictosuppressSARtransmissioninthecaseofattemptedoperationinaforbiddenorbit

PITZANDMILLER:TERRASAR-XSATELLITEFig.11.TerraSAR-XandTanDEM-Xsynchorns.

segmentwherereceive-onlyoperationisplanned.Receive-onlyoperationisusedduringbistaticoperationoftheradarsforDEMdatacollection:Oneradartrans-mits,andbothradarsreceive.

3)AsyncwarninglogictosuppressSARtransmissioninthecasethatlowpowerlevelsofsyncpulsesinferapossiblyincorrectorbitpositionofthepartnersatellite.

4)Furthermore,anISLreceiverandadecoderonTanDEM-Xallow“listening”totheTerraSAR-Xlow-rateS-bandtelemetry.InthecasethatTerraSAR-Xisinsafemode,TanDEM-Xsuppressesradartransmissionconsid-eringtheconcernofradarilluminationofTerraSAR-X.

VII.CONCLUSIONANDOUTLOOK

Thedesignandperformanceofthebus,SAR,andaddi-tionalpayloadshavebeendescribedfortheTerraSAR-XandTanDEM-Xsatellites.Thiscoversthearchitectureandtechnol-ogyoftheSARactiveantennaandalsotheinternalcalibrationschemetoexplainhowtheSARflexibilityandstabilityareachieved.Anoutlineoftheprelaunchtestprogramunderlinestheapproachtosecurethefunctionalityandperformanceinorbit.AsummaryofthecurrentTerraSAR-Xin-orbithealthstatusconfirmsthedesignandtestapproachandprovidesthebestfoundationforthesuccessofTanDEM-X.Safeguardsforcloseformationflighthavebeendevelopedandwillbetestedinorbitbeforethebeginofthisexcitingandnovelphase.

Inthemeantime,thenextgenerationSARinstrumenthasalreadyentereditsdefinitionphase.Acleartrendtowarddigitalbeamformingcanbeobserved,providinghighgeometricreso-lutionincombinationwithaverywideswath[18].Toachievethis,newtechniquessuchas,forexample,scanonreceiveor

621

multiapertureprocessingarerequired.Asaconsequence,theanalog-to-digitalconversionoftheradarechowillbeperformedonanantennasubaperturelevel,providingdigitalinputtothesubsequentbeamformingunits.

Thedemonstrationofthefeasibilityandperformanceofadigitalbeamformingantennaissubjectofthe“HighResolutionWideSwath”SARDemonstratorthatiscurrentlyunderdevel-opmentatAstriuminFriedrichshafen[19].

REFERENCES

[1]D.Evans,C.Elachi,B.Holt,M.Kobrick,H.Ottl,P.Pampaloni,M.Schier,

E.R.Stofan,M.Vogt,S.Wall,J.vanZyl,andJ.B.Way,“Theshut-tleimagingRadar-CandX-SARmission,”Eos,Trans.Amer.Geophys.Union,vol.74,no.13,pp.145–158,1993.

[2]T.G.Farr,P.A.Rosen,E.Caro,R.Crippen,R.Duren,S.Hensley,

M.Kobrick,M.Paller,E.Rodriguez,L.Roth,D.Seal,S.Shaffer,J.Shimada,J.Umland,M.Werner,M.Oskin,D.Burbank,andD.Alsdorf,“TheShuttleRadarTopographyMission,”Rev.Geophys.,vol.45,no.2,p.RG2004,2007.DOI:10.1029/2005RG000183.

[3]A.Nico,M.Eineder,H.Breit,andS.Suchandt,“ShuttleRadarTopog-raphyMission(SRTM):DLR’sinterferometricSARprocessorforthegenerationofaglobaldigitalelevationmodel,”inProc.2ndInt.WorkshopERSSARInterferometryFRINGE,Liège,Belgium,1999.

[4]C.Reigber,H.Luhr,andP.Schwintzer,“CHAMPmissionstatus,”Adv.

SpaceRes.,vol.30,no.2,pp.129–134,Jul.2002.

[5]B.D.Tapley,S.Bettadpur,M.Watkins,andC.Reigber,“GRACE:The

gravityrecoveryandclimateexperiment—Amissionoverviewandearlyresults,”Geophys.Res.Lett.,vol.31,no.9,p.L09607,2004.

[6]H.Fiedler,E.Boerner,J.Mittermayer,andG.Krieger,“Totalzero

Dopplersteering—AnewmethodforminimizingtheDopplercentroid,”IEEEGeosci.RemoteSens.Lett.,vol.2,no.2,pp.141–145,Apr.2005.[7]Y.T.Yoon,M.Eineder,N.Yague-Martinez,andO.Montenbruck,

“TerraSAR-Xprecisetrajectoryestimationandqualityassessment,”IEEETrans.Geosci.RemoteSens.,vol.47,no.6,pp.1859–1868,Jun.2009.[8]M.Stangl,R.Werninghaus,andR.Zahn,“TheTerraSAR-Xactivephased

arrayantenna,”inProc.IEEEPhasedArrayConf.,Boston,MA,2003,pp.70–75.

[9]S.Suchandt,H.Runge,H.Breit,U.Steinbrecher,A.Kotenkov,and

U.Balss,“AutomaticextractionoftrafficflowsusingTerraSAR-Xalong-trackinterferometry,”IEEETrans.Geosci.RemoteSens.,vol.48,no.2,pp.807–819,Feb.2010.

[10]J.Mittermayer,M.Younis,R.Metzig,S.Wollstadt,J.MárquezMartínez,

andA.Meta,“TerraSAR-Xsystemperformancecharacterizationandverification,”IEEETrans.Geosci.RemoteSens.,vol.48,no.2,pp.660–676,Feb.2010.

[11]D.Miller,M.Stangl,andR.Metzig,“On-groundtestingof

TerraSAR-Xinstrument,”inProc.EUSARConf.,Dresden,Germany,May2006,pp.16–18.

[12]B.Smutny,R.Lange,H.Kämpfner,D.Dallmann,G.Mühlnikel,

M.Reinhardt,K.Saucke,U.Sterr,B.Wandernoth,andR.Czichy,“In-orbitverificationofopticalinter-satellitecommunicationlinksbasedonhomodyneBPSK,”inProc.Publ.Photon.West,LASE,2008,p.687702.[13]M.Rothacher,B.D.Tapley,C.Reigber,R.Koenig,C.Falck,

L.Grunwaldt,W.Koehler,F.-H.Massmann,andG.Michalak,“TheTORinstrumentonTerraSAR-XandTanDEM-X,”inProc.IGARSS,Barcelona,Spain,Jul.2007,pp.4983–4986.

[14]D.Miller,“TheTanDEM-Xsatellite,”inProc.EUSARConf.,

Friedrichshafen,Germany,Jun.2–5,2008.

[15]M.Bartusch,H.Berg,andO.Siebertz,“TheTanDEM-Xmission,”

inProc.EUSARConf.,Friedrichshafen,Germany,Jun.2–5,2008,pp.27–30.

[16]M.Zink,G.Krieger,H.Fiedler,I.Hajnsek,andA.Moreira,“The

TanDEM-Xmissionconcept,”inProc.EUSARConf.,Friedrichshafen,Germany,Jun.2–5,2008.

[17]G.Krieger,A.Moreira,H.Fiedler,I.Hajnsek,M.Werner,M.Younis,

andM.Zink,“TanDEM-X:Asatelliteformationforhigh-resolutionSARinterferometry,”IEEETrans.Geosci.RemoteSens.,vol.45,no.11,pp.3317–3341,Nov.2007.

[18]G.Krieger,N.Gebert,M.Younis,F.Bordoni,A.Patyuchenko,and

A.Moreira,“Advancedconceptsforultra-wideswathSARimaging,”inProc.7thEUSAR,Friedrichshafen,Germany,Jun.2008.

[19]C.Fischer,C.Schaefer,andC.Heer,“Technologydevelopmentforthe

HRWS(HighResolutionWideSwath)SAR,”inProc.IRS,Cologne,Germany,Sep.2007.

622IEEETRANSACTIONSONGEOSCIENCEANDREMOTESENSING,VOL.48,NO.2,FEBRUARY2010

WolfgangPitzwasbornin1961inLudwigsburg,Germany.HereceivedtheMasterofAerospaceEn-gineeringatStuttgartUniversity,Stuttgart,Germany,in1988.

Hejoinedthespaceindustryinthesameyear.Stayingwithhisfirstemployer,formerlyDornierSystemsandnowAstriumSatellites,hefirstworkedasThermalControlEngineeronvarioussatelliteprojectsandbecameProjectManageroftheGermangravitymissionCHAMPin1996.InparalleltotheworkonCHAMPheledaseriesofnationaland

internationalsatelliteearly-definitionphases,mostnotablyfortheDIVAandROCSAT-2missions.In2000hebecameProjectManageroftheGermanDLRSARsatelliteTerraSAR-X.Startingfrom2005heplayedamajorroleinthedefinitionoftheGermanDLRSARsatelliteTanDEM-X.AfterthelaunchofTerraSAR-Xin2007hebecameProjectManageroftheSARinstrumentfortheESAGMESmissionSentinel-1.Since2009hehasbeenHeadofIndustrialisa-tionoftheAstriumSatellitesEarthObservationandScienceDivision.

DavidMillerwasbornin1955inLiverpool,U.K.HereceivedtheB.S.degreeinphysicsfromBristolUniversity,Bristol,U.K.

HejoinedBritishAerospacein1977andgainedfirstexperienceonavionicsandradarsystems.In1981,hemovedtoGermanyandjoinedDornierSystemswhichlaterbecameAstrium.Afterper-formanceanalysisoftheERS-1ActiveMicrowaveInstrumentandtheShuttleX-SARexperiment,hebecameProjectManagerfortheAdvancedScat-terometeronMetop.Hebecameresponsibleforthe

radaronTerraSAR-Xin2002andbecameManageroftheTanDEM-Xsatellitein2006.

因篇幅问题不能全部显示,请点此查看更多更全内容