®SP202E/232E/233E/310E/312EHigh-Performance RS-232Line Drivers/Receivers■Operates from Single +5V Power Supply■Meets All RS-232D and ITU V.28Specifications
■Operates with 0.1µF to 10µF Capacitors■High Data Rate – 120Kbps Under Load■Low Power Shutdown ≤1µA (Typical)■3-State TTL/CMOS Receiver Outputs■Low Power CMOS – 3mA Operation■Improved ESD Specifications:
±15kV Human Body Model
±15kV IEC1000-4-2 Air Discharge±8kV IEC1000-4-2 Contact Discharge
DESCRIPTION…
The SP202E/232E/233E/310E/312E devices are a family of line driver and receiver pairs thatmeet the specifications of RS-232 and V.28 serial protocols with enhanced ESD performance.The ESD tolerance has been improved on these devices to over ±15KV for both Human BodyModel and IEC1000-4-2 Air Discharge Method. These devices are pin-to-pin compatible withSipex's SP232A/233A/310A/312A devices as well as popular industry standards. As with theinitial versions, the SP202E/232E/233E/310E/312E devices feature at least 120Kbps data rateunder load, 0.1µF charge pump capacitors, and overall ruggedness for commercial applications.This family also features Sipex's BiCMOS design allowing low power operation withoutsacrificing performance. The series is available in plastic and ceramic DIP and SOIC packagesoperating over the commercial, industrial and military temperature ranges.
ModelSP202ESP232ESP233ESP310ESP312E
Number of RS232DriversReceivers2222222222No. of ReceiversNo. of External
Active in Shutdown0.1µF Capacitors
0404000424
ShutdownWakeUp TTL Tri–StateNoNoNoNoNoNoNoNoNoYesNoYesYesYesYes
Rev. 06/20/02SP202E Series High Performance RS232 Transceivers© Copyright 2002 Sipex Corporation
1
ABSOLUTE MAXIMUM RATINGS
This is a stress rating only and functional operation of the device atthese or any other conditions above those indicated in the operationsections of this specification is not implied. Exposure to absolutemaximum rating conditions for extended periods of time may affectreliability.
Vcc.................................................................................................................................................................+6VV+....................................................................................................................(Vcc-0.3V) to +11.0VV-............................................................................................................................................................-11.0VInput Voltages
TIN.........................................................................................................................-0.3 to (Vcc +0.3V)RIN............................................................................................................................................................±15VOutput Voltages
TOUT....................................................................................................(V+, +0.3V) to (V-, -0.3V)ROUT................................................................................................................-0.3V to (Vcc +0.3V)Short Circuit Duration
TOUT.........................................................................................................................................ContinuousPower Dissipation
CERDIP..............................................................................675mW(derate 9.5mW/°C above +70°C)
Plastic DIP..........................................................................375mW(derate 7mW/°C above +70°C)
Small Outline......................................................................375mW(derate 7mW/°C above +70°C)
SPECIFICATIONS
VCC=+5V±10%; V+=+8.5V to +13.2V (SP231A only) 0.1µF charge pump capacitors; TMIN to TMAX unless otherwise noted.PARAMETERSMIN.TTL INPUTLogic ThresholdLOWHIGH2.0Logic Pull-Up CurrentTTL OUTPUTTTL/CMOS OutputVoltage, LowVoltage, High3.5Leakage Current **; TA = +25°RS-232 OUTPUTOutput Voltage Swing±5Output ResistanceOutput Short Circuit CurrentMaximum Data RateRS-232 INPUTVoltage RangeVoltage ThresholdLOWHIGHHysteresisResistance300120-150.80.23TYP.MAX.UNITSCONDITIONS0.815200VoltsVoltsµATIN ; EN, SDTIN ; EN, SDTIN = 0VIOUT = 3.2mA; Vcc = +5VIOUT = -1.0mAEN = VCC, 0V≤VOUT ≤VCCAll transmitter outputs loadedwith 3kΩ to GroundVCC = 0V; VOUT = ±2VInfinite durationCL = 2500pF, RL= 3kΩ0.40.05±9±18240+151.21.70.552.81.07±10VoltsVoltsµAVoltsOhmsmAKbpsVoltsVoltsVoltsVoltskΩVCC = 5V, TA = +25°CVCC = 5V, TA = +25°CVCC = 5V, TA = +25°CTA = +25°C, -15V ≤ VIN ≤ +15VTTL to RS-232; CL = 50pFRS-232 to TTLCL = 10pF, RL= 3-7kΩ; TA =+25°CCL = 2500pF, RL= 3kΩ;measured from +3V to -3Vor -3V to +3VSP310E and SP312E onlySP310E and SP312E onlyNo load, TA= +25°C; VCC = 5VAll transmitters RL = 3kΩ;TA = +25°CVCC = 5V, TA = +25°C© Copyright 2002 Sipex Corporation
DYNAMIC CHARACTERISTICSDriver Propagation DelayReceiver Propagation DelayInstantaneous Slew RateTransition Region Slew RateOutput Enable Time **Output Disable Time **POWER REQUIREMENTSVCC Power Supply CurrentShutdown Supply Current ****SP310E and SP312E onlyRev. 06/20/02
1.50.11040025031513.01.030µsµsV/µsV/µsnsns55mAmAµASP202E Series High Performance RS232 Transceivers
2
PERFORMANCE CURVES
-11-10-9V– Voltage (Volts)V+ (Volts)1210VCC = 6V86420VCC = 5V302520ICC (mA)8.48.2VCC = 6VVOH (Volts)8.07.87.67.47.27.0Load current = 0mATA = 25°C-8-7-6-5-4-30246VCC = 6VVCC = 5VVCC = 4V15VCC = 5V10VCC = 4V5VCC = 3V0-55VCC = 4V81012140510152025303540-4002570851256.84.54.755.0VCC (Volts)5.255.5Load Current (mA)Load Current (mA)Temperature (°C)PINOUT…C1+V+C1-C2+C2-V-T2OUTR2IN12345678161514131211109VCCGNDT1OUTR1INR1OUTT1INT2INR2OUTC1+V+C1-C2+C2-V-T2OUTR2IN12345678161514131211109VCCGNDT1OUTR1INR1OUTT1INT2INR2OUTSP202E201918T2INT1INR1OUTR1INT1OUTGNDVCCV+GND123R2OUTR2INT2OUTV-C2-C2+C1–C1+C2+C2–T2INT1INR1OUTR1INT1OUTGNDVCCC1+GND123201918R2OUTR2INT2OUTV-C2-C2+V+C1-V-C2+N.C./ENC1+V+C1-C2+C2-V-T2OUTR2INSP232E1234567892019SHDNVCCGNDSP310E_A/312E_A1817161514131211SP233ECPSP233ECT4567891716151413121145678917161514131211T1OUTR1INR1OUTN.C.T1INT2INN.C.V–1020-PIN SOICC2-1020-PIN PLASTIC DIPR2OUT1020-PIN SSOPNC *C1+V+C1-C2+C2-V-T2OUTR2IN123456789181716151413121110ON/OFFVCCGNDT1OUTR1INR1OUTT1INT2INR2OUTEN *C1+V+C1-C2+C2-V-T2OUTR2IN123456789181716151413121110SHUTDOWNVCCGNDT1OUTR1INR1OUTT1INT2INR2OUTSP312ESP310E* N.C. for SP310E_A, EN for SP312E_ARev. 06/20/02
SP202E Series High Performance RS232 Transceivers
© Copyright 2002 Sipex Corporation
3
+FEATURES…
The SP202E/232E/233E/310E/312E devicesare a family of line driver and receiver pairs thatmeet the specifications of RS-232 and V.28serial protocols with enhanced ESD perfor-mance. The ESD tolerance has been improvedon these devices to over ±15KV for both HumanBody Model and IEC1000-4-2 Air DischargeMethod. These devices are pin-to-pin compat-ible with Sipex's 232A/233A/310A/312Adevices as well as popular industry standards.As with the initial versions, the SP202E/232E/233E/310E/312E devices feature10V/µs slewrate, 120Kbps data rate under load, 0.1µFcharge pump capacitors, overall ruggednessfor commercial applications, and increased drivecurrent for longer and more flexible cableconfigurations. This family also features Sipex'sBiCMOS design allowing low power operationwithout sacrificing performance.
The SP202E/232E/233E/310E/312E deviceshave internal charge pump voltage converterswhich allow them to operate from a single +5Vsupply. The charge pumps will operate withpolarized or non-polarized capacitors rangingfrom 0.1 to 10 µF and will generate the ±10Vneeded to generate the RS-232 output levels.Both meet all EIA RS-232 and ITU V.28specifications.
The SP310E provides identical features as theSP232E with a single control line whichsimultaneously shuts down the internal DC/DCconverter and puts all transmitter and receiveroutputs into a high impedance state. The SP312Eis identical to the SP310E with separate tri-stateand shutdown control lines.
THEORY OF OPERATION
The SP232E, SP233E, SP310E and SP312Edevices are made up of three basic circuit blocks –1) a driver/transmitter, 2) a receiver and 3) a chargepump. Each block is described below.
Driver/Transmitter
The drivers are inverting transmitters, which ac-cept TTL or CMOS inputs and output the RS-232signals with an inverted sense relative to the inputlogic levels. Typically the RS-232 output voltageswing is ±9V. Even under worst case loadingconditions of 3kOhms and 2500pF, the output isguaranteed to be ±5V, which is consistent with theRS-232 standard specifications. The transmitteroutputs are protected against infinite short-circuitsto ground without degradation in reliability.
+5V INPUT10 F 6.3Vµ+10.1 Fµ+6.3V3416C +1VCCC -1C +2+5V to +10VVoltage Doubler+10V to -10VVoltage InverterV+20.1 F 6.3Vµ*+0.1 Fµ16V0.1 Fµ+16V5V-6C -2TTL/CMOS OUTPUTSTTL/CMOS INPUTS400kΩT IN111T1400kΩ14T OUT1T IN210T2R15kΩ7T OUT2R OUT1R IN1R OUT29SP202ESP232ER25kΩ8R IN2GND15*The negative terminal of the V+ storage capacitor can be tied to either VCC or GND. Connecting the capacitor to VCC (+5V) is recommended.Figure 1. Typical Circuit using the SP202E or SP232E.Rev. 06/20/02SP202E Series High Performance RS232 Transceivers
RS-232 INPUTS1213RS-232 OUTPUTS© Copyright 2002 Sipex Corporation
4
+5V INPUT+5V INPUT77TTL/CMOS OUTPUTSTTL/CMOS INPUTSTTL/CMOS OUTPUTSTTL/CMOS INPUTSVCCVCCT IN12RS-232 OUTPUTST IN12400kΩT1T25T OUT1400kΩT1T25T OUT1T IN21400kΩ18T OUT2T IN21400kΩ18T OUT2RS-232 INPUTSR OUT1R IN1R OUT1R15kΩR IN15kΩR OUT220813121714R2C +1C -1V-V-V+SP233ECP19R IN2R OUT22013C +11410178R25kΩC -1V-V-V+219R IN2Do not makeconnection tothese pinsInternal-10V PowerSupplyInternal+10V PowerSupply5kΩC +112Do not makeconnection tothese pinsInternal-10V PowerSupplyInternal+10V PowerSupplyC +1215C +215C +2C -22C -1016GND6GND9SP233ECTGNDGND69C -22C -1116Figure 2. Typical Circuits using the SP233ECP and SP233ECT
The instantaneous slew rate of the transmitter
output is internally limited to a maximum of 30V/µs in order to meet the standards [EIA RS-232-D2.1.7, Paragraph (5)]. However, the transition re-gion slew rate of these enhanced products is typi-cally 10V/µs. The smooth transition of the loadedoutput from VOL to VOH clearly meets the mono-tonicity requirements of the standard [EIARS-232-D 2.1.7, Paragraphs (1) & (2)].Receivers
The receivers convert RS-232 input signals toinverted TTL signals. Since the input is usuallyfrom a transmission line, where long cable lengths
+5V INPUT10 F 6.3Vµand system interference can degrade the signal, the
inputs have a typical hysteresis margin of 500mV.This ensures that the receiver is virtually immuneto noisy transmission lines.
The input thresholds are 0.8V minimum and 2.4Vmaximum, again well within the ±3V RS-232requirements. The receiver inputs are also pro-tected against voltages up to ±15V. Should aninput be left unconnected, a 5KOhm pulldownresistor to ground will commit the output of thereceiver to a high state.
+5V INPUT10 F 6.3Vµ++20.1 Fµ+6.3V4517C +1VCCC -1C +2+5V to +10VVoltage Doubler+10V to -10VVoltage Inverter3+V+0.1 µF16V217*+0.1 µF16VTTL/CMOS INPUTS0.1 Fµ+6.3V45C +1VCCC -1C +2+5V to +10VVoltage Doubler+10V to -10VVoltage InverterV+0.1 Fµ16V3+*16V0.1 Fµ+16V6V-7C -20.1 Fµ+16V6V-7+0.1 FµC -2TTL/CMOS OUTPUTSTTL/CMOS INPUTSRS-232 OUTPUTST IN112T1400kΩ15T OUT1T IN112T1400kΩ15T OUT1T IN211T2R15kΩ8T OUT2T IN211T28T OUT2R OUT1R15kΩR IN1R OUT210R25kΩ9R IN2R OUT210R25kΩ9R IN2SP310EGND1618ON/OFFEN1SP312EGND1618SHUTDOWN*The negative terminal of the V+ storage capacitor can be tied to either VCC or GND. Connecting the capacitor to VCC (+5V) is recommended.*The negative terminal of the V+ storage capacitor can be tied to either VCC or GND. Connecting the capacitor to VCC (+5V) is recommended.Figure 3. Typical Circuits using the SP310E and SP312E
Rev. 06/20/02SP202E Series High Performance RS232 Transceivers© Copyright 2002 Sipex Corporation
5
RS-232 INPUTSR OUT1R IN1RS-232 INPUTS1314TTL/CMOS OUTPUTS1314RS-232 OUTPUTS400kΩ400kΩRS-232 INPUTS3R1434RS-232 OUTPUTSVCC = +5V+5VC1+–C4+––+C2+–VDD Storage CapacitorVSS Storage Capacitor–5V–5VC3Figure 4. Charge Pump — Phase 1
In actual system applications, it is quite possiblefor signals to be applied to the receiver inputsbefore power is applied to the receiver circuitry.This occurs, for example, when a PC user attemptsto print, only to realize the printer wasn’t turned on.In this case an RS-232 signal from the PC willappear on the receiver input at the printer. Whenthe printer power is turned on, the receiver willoperate normally. All of these enhanced devicesare fully protected.
Charge Pump
The charge pump is a Sipex–patented design(5,306,954) and uses a unique approach com-pared to older less–efficient designs. The chargepump still requires four external capacitors, butuses a four–phase voltage shifting technique toattain symmetrical 10V power supplies. Thereis a free–running oscillator that controls the fourphases of the voltage shifting. A description ofeach phase follows.
Phase 1
— VSS charge storage —During this phase ofthe clock cycle, the positive side of capacitorsC1 and C2 are initially charged to +5V. Cl+ isthen switched to ground and the charge in C1– istransferred to C2–. Since C2+ is connected to+5V, the voltage potential across capacitor C2 isnow 10V.
VCC = +5VPhase 2
— VSS transfer — Phase two of the clock con-nects the negative terminal of C2 to the VSSstorage capacitor and the positive terminal of C2to ground, and transfers the generated –l0V toC3. Simultaneously, the positive side of capaci-tor C 1 is switched to +5V and the negative sideis connected to ground.
Phase 3
— VDD charge storage — The third phase of theclock is identical to the first phase — the chargetransferred in C1 produces –5V in the negativeterminal of C1, which is applied to the negativeside of capacitor C2. Since C2+ is at +5V, thevoltage potential across C2 is l0V.
Phase 4
— VDD transfer — The fourth phase of the clockconnects the negative terminal of C2 to ground,and transfers the generated l0V across C2 to C4,the VDD storage capacitor. Again, simultaneouslywith this, the positive side of capacitor C1 isswitched to +5V and the negative side is con-nected to ground, and the cycle begins again.Since both V+ and V– are separately generatedfrom VCC; in a no–load condition V+ and V– will
C4C1+–C2+–+––+VDD Storage CapacitorVSS Storage Capacitor–10VC3Figure 5. Charge Pump — Phase 2
Rev. 06/20/02
SP202E Series High Performance RS232 Transceivers
© Copyright 2002 Sipex Corporation
6
+10V
a) C2+
GNDGND
b) C2–
–10V
Figure 6. Charge Pump Waveforms
be symmetrical. Older charge pump approachesthat generate V– from V+ will show a decrease inthe magnitude of V– compared to V+ due to theinherent inefficiencies in the design.
The clock rate for the charge pump typicallyoperates at 15kHz. The external capacitors canbe as low as 0.1µF with a 16V breakdownvoltage rating.
VCC = +5VShutdown (SD) and Enable (EN) for theSP310E and SP312E
Both the SP310E and SP312E have a shutdown/standby mode to conserve power in battery-pow-ered systems. To activate the shutdown mode,which stops the operation of the charge pump, alogic “0” is applied to the appropriate control line.For the SP310E, this control line is ON/OFF (pin18). Activating the shutdown mode also puts the
+5VC1+–C4+––+C2+–VDD Storage CapacitorVSS Storage Capacitor–5V–5VC3Figure 7. Charge Pump — Phase 3
VCC = +5V+10VC1+–C4+––+C2+–VDD Storage CapacitorVSS Storage CapacitorC3Figure 8. Charge Pump — Phase 4Rev. 06/20/02SP202E Series High Performance RS232 Transceivers© Copyright 2002 Sipex Corporation
7
SP310E transmitter and receiver outputs in a highimpedance condition (tri-stated). The shutdownmode is controlled on the SP312E by a logic “0”on the SHUTDOWN control line (pin 18); this alsoputs the transmitter outputs in a tri–state mode.The receiver outputs can be tri–stated separatelyduring normal operation or shutdown by a logic“1” on the ENABLE line (pin 1).Wake–Up Feature for the SP312E
The SP312E has a wake–up feature that keepsall the receivers in an enabled state when thedevice is in the shutdown mode. Table 1 definesthe truth table for the wake–up function.With only the receivers activated, the SP312Etypically draws less than 5µA supply current.In the case of a modem interfaced to a computerin power down mode, the Ring Indicator (RI)signal from the modem would be used to \"wakeup\" the computer, allowing it to accept datatransmission.
After the ring indicator signal has propagatedthrough the SP312E receiver, it can be used totrigger the power management circuitry of thecomputer to power up the microprocessor, andbring the SD pin of the SP312E to a logic high,taking it out of the shutdown mode. The receiverpropagation delay is typically 1µs. The enabletime for V+ and V– is typically 2ms. After V+ andV– have settled to their final values, a signal canbe sent back to the modem on the data terminalready (DTR) pin signifying that the computer isready to accept and transmit data.
Pin Strapping for the SP233ECT
The SP233E packaged in the 20–pin SOIC pack-age (SP233ECT) has a slightly different pinoutthan the SP233E in other package configurations.To operate properly, the following pairs of pinsmust be externally wired together:
the two V– pins (pins 10 and 17)the two C2+ pins (pins 12 and 15)the two C2– pins (pins 11 and 16)
All other connections, features, functions andperformance are identical to the SP233E asspecified elsewhere in this data sheet.
ESD TOLERANCE
The SP202E/232E/233E/310E/312E devicesincorporates ruggedized ESD cells on all driveroutput and receiver input pins. The ESD struc-ture is improved over our previous family formore rugged applications and environments sen-sitive to electro-static discharges and associatedtransients. The improved ESD tolerance is atleast ±15KV without damage nor latch-up.There are different methods of ESD testingapplied:
a) MIL-STD-883, Method 3015.7b) IEC1000-4-2 Air-Dischargec) IEC1000-4-2 Direct ContactThe Human Body Model has been the generallyaccepted ESD testing method for semiconductors.This method is also specified in MIL-STD-883,Method 3015.7 for ESD testing. The premise ofthis ESD test is to simulate the human body’spotential to store electro-static energy anddischarge it to an integrated circuit. Thesimulation is performed by using a test model asshown in Figure 9. This method will test the IC’scapability to withstand an ESD transient duringnormal handling such as in manufacturing areaswhere the ICs tend to be handled frequently.The IEC-1000-4-2, formerly IEC801-2, isgenerally used for testing ESD on equipment andsystems. For system manufacturers, they mustguarantee a certain amount of ESD protectionsince the system itself is exposed to the outsideenvironment and human presence. The premiseSD0011EN0101PowerUp/DownDownDownUpUpReceiverOutputsEnableTri–stateEnableTri–stateTable 1. Wake-up Function Truth Table.Rev. 06/20/02SP202E Series High Performance RS232 Transceivers© Copyright 2002 Sipex Corporation
8
RRCCSW1SW1DC PowerSourceRRSSSW2SW2CCSSDeviceUnderTestFigure 9. ESD Test Circuit for Human Body Model
with IEC1000-4-2 is that the system is requiredto withstand an amount of static electricity whenESD is applied to points and surfaces of theequipment that are accessible to personnel duringnormal usage. The transceiver IC receives mostof the ESD current when the ESD source isapplied to the connector pins. The test circuit forIEC1000-4-2 is shown on Figure 10. There aretwo methods within IEC1000-4-2, the AirDischarge method and the Contact Dischargemethod.With the Air Discharge Method, an ESD voltageis applied to the equipment under test (EUT)through air. This simulates an electrically chargedperson ready to connect a cable onto the rear ofthe system only to find an unpleasant zap justbefore the person touches the back panel. Thehigh energy potential on the person dischargesthrough an arcing path to the rear panel of thesystem before he or she even touches the system.This energy, whether discharged directly orthrough air, is predominantly a function of the
Contact-Discharge ModuleRRCCSW1SW1DC PowerSourceRRSSRVSW2SW2CCSSDeviceUnderTestRS and RV add up to 330Ω for IEC1000-4-2.Figure 10. ESD Test Circuit for IEC1000-4-2Rev. 06/20/02SP202E Series High Performance RS232 Transceivers© Copyright 2002 Sipex Corporation
9
30A
discharged to the equipment from a person alreadyholding the equipment. The current is transferredon to the keypad or the serial port of the equipmentdirectly and then travels through the PCB andfinally to the IC.
The circuit models in Figures 9 and 10 representthe typical ESD testing circuit used for all threemethods. The CS is initially charged with the DCpower supply when the first switch (SW1) is on.Now that the capacitor is charged, the secondswitch (SW2) is on while SW1 switches off. Thevoltage stored in the capacitor is then appliedthrough RS, the current limiting resistor, onto thedevice under test (DUT). In ESD tests, the SW2switch is pulsed so that the device under testreceives a duration of voltage.
For the Human Body Model, the current limitingresistor (RS) and the source capacitor (CS) are1.5kΩ an 100pF, respectively. For IEC-1000-4-2, the current limiting resistor (RS) and the sourcecapacitor (CS) are 330Ω an 150pF, respectively.The higher CS value and lower RS value in theIEC1000-4-2 model are more stringent than theHuman Body Model. The larger storage capacitorinjects a higher voltage to the test point whenSW2 is switched on. The lower current limitingresistor increases the current charge onto the testpoint.
15A
0A
t=0ns
t ➙
Figure 11. ESD Test Waveform for IEC1000-4-2
t=30ns
discharge current rather than the dischargevoltage. Variables with an air discharge such asapproach speed of the object carrying the ESDpotential to the system and humidity will tend tochange the discharge current. For example, therise time of the discharge current varies with theapproach speed.
The Contact Discharge Method applies the ESDcurrent directly to the EUT. This method wasdevised to reduce the unpredictability of theESD arc. The discharge current rise time isconstant since the energy is directly transferredwithout the air-gap arc. In situations such ashand held systems, the ESD charge can be directly
SP202EFamily
i ➙ HUMAN BODY IEC1000-4-2 MODEL Air Discharge Direct Contact Level ±15kV ±15kV
±8kV ±8kV
4 4Driver Outputs ±15kVReceiver Inputs ±15kV
Table 2. Transceiver ESD Tolerance Levels
Rev. 06/20/02SP202E Series High Performance RS232 Transceivers© Copyright 2002 Sipex Corporation
10
PACKAGE: PLASTICSMALL OUTLINE (SOIC)EHDAØeBA1LDIMENSIONS (Inches)Minimum/Maximum(mm)AA1BDEeHLØ14–PIN0.090/0.104(2.29/2.649))0.004/0.012(0.102/0.300)0.013/0.020(0.330/0.508)0.348/0.363(8.83/9.22)0.291/0.299(7.402/7.600)0.050 BSC(1.270 BSC)0.394/0.419(10.00/10.64)0.016/0.050(0.406/1.270)0°/8°(0°/8°)16–PIN0.090/0.104(2.29/2.649)0.004/0.012(0.102/0.300)0.013/0.020(0.330/0.508)0.398/0.413(10.10/10.49)0.291/0.299(7.402/7.600)0.050 BSC(1.270 BSC)0.394/0.419(10.00/10.64)0.016/0.050(0.406/1.270)0°/8°(0°/8°)18–PIN0.090/0.104(2.29/2.649))0.004/0.012(0.102/0.300)0.013/0.020(0.330/0.508)0.447/0.463(11.35/11.74)0.291/0.299(7.402/7.600)0.050 BSC(1.270 BSC)0.394/0.419(10.00/10.64)0.016/0.050(0.406/1.270)0°/8°(0°/8°)20–PIN0.090/0.104(2.29/2.649)0.004/0.012(0.102/0.300)0.013/0.020(0.330/0.508)0.496/0.512(12.60/13.00)0.291/0.299(7.402/7.600)0.050 BSC(1.270 BSC))0.394/0.419(10.00/10.64)0.016/0.050(0.406/1.270)0°/8°(0°/8°)24–PIN0.090/0.104(2.29/2.649)0.004/0.012(0.102/0.300)0.013/0.020(0.330/0.508)0.599/0.614(15.20/15.59)0.291/0.299(7.402/7.600)0.050 BSC(1.270 BSC)0.394/0.419(10.00/10.64)0.016/0.050(0.406/1.270)0°/8°(0°/8°)28–PIN0.090/0.104(2.29/2.649)0.004/0.012(0.102/0.300)0.013/0.020(0.330/0.508)0.697/0.713(17.70/18.09)0.291/0.299(7.402/7.600)0.050 BSC(1.270 BSC)0.394/0.419(10.00/10.64)0.016/0.050(0.406/1.270)0°/8°(0°/8°)Rev. 06/20/02SP202E Series High Performance RS232 Transceivers© Copyright 2002 Sipex Corporation
11
PACKAGE: PLASTICSMALL OUTLINE (SOIC)(NARROW)EHh x 45°DAØeBA1LDIMENSIONS (Inches)Minimum/Maximum(mm)AA1BDEeHhLØ8–PIN0.053/0.069(1.346/1.748)0.004/0.010(0.102/0.2490.014/0.019(0.35/0.49)0.189/0.197(4.80/5.00)0.150/0.157(3.802/3.988)0.050 BSC(1.270 BSC)0.228/0.244(5.801/6.198)0.010/0.020(0.254/0.498)0.016/0.050(0.406/1.270)0°/8°(0°/8°)14–PIN0.053/0.069(1.346/1.748)0.004/0.010(0.102/0.249)0.013/0.020(0.330/0.508)16–PIN0.053/0.069(1.346/1.748)0.004/0.010(0.102/0.249)0.013/0.020(0.330/0.508)0.337/0.3440.386/0.394(8.552/8.748)(9.802/10.000)0.150/0.157(3.802/3.988)0.050 BSC(1.270 BSC)0.228/0.244(5.801/6.198)0.010/0.020(0.254/0.498)0.016/0.050(0.406/1.270)0°/8°(0°/8°)0.150/0.157(3.802/3.988)0.050 BSC(1.270 BSC)0.228/0.244(5.801/6.198)0.010/0.020(0.254/0.498)0.016/0.050(0.406/1.270)0°/8°(0°/8°)Rev. 06/20/02SP202E Series High Performance RS232 Transceivers© Copyright 2002 Sipex Corporation
12
PACKAGE: PLASTIC SHRINKSMALL OUTLINE(SSOP)EHDAØeBA1LDIMENSIONS (Inches)Minimum/Maximum(mm)AA1BDEeHLØ20–PIN0.068/0.078(1.73/1.99)0.002/0.008(0.05/0.21)0.010/0.015(0.25/0.38)0.278/0.289(7.07/7.33)0.205/0.212(5.20/5.38)0.0260 BSC(0.65 BSC)0.301/0.311(7.65/7.90)0.022/0.037(0.55/0.95)0°/8°(0°/8°)24–PIN0.068/0.078(1.73/1.99)0.002/0.008(0.05/0.21)0.010/0.015(0.25/0.38)0.317/0.328(8.07/8.33)0.205/0.212(5.20/5.38)0.0256 BSC(0.65 BSC)0.301/0.311(7.65/7.90)0.022/0.037(0.55/0.95)0°/8°(0°/8°)28–PIN0.068/0.078(1.73/1.99)0.002/0.008(0.05/0.21)0.010/0.015(0.25/0.38)0.397/0.407(10.07/10.33)0.205/0.212(5.20/5.38)0.0256 BSC(0.65 BSC)0.301/0.311(7.65/7.90)0.022/0.037(0.55/0.95)0°/8°(0°/8°)Rev. 06/20/02SP202E Series High Performance RS232 Transceivers© Copyright 2002 Sipex Corporation
13
PACKAGE: PLASTICDUAL–IN–LINE(NARROW)E1ED1 = 0.005\" min.(0.127 min.)DA1 = 0.015\" min.(0.381min.)A = 0.210\" max.(5.334 max).A2CØeA = 0.300 BSC(7.620 BSC)Le = 0.100 BSC(2.540 BSC)B1BALTERNATEEND PINS(BOTH ENDS)DIMENSIONS (Inches)Minimum/Maximum(mm)A2BB1CDEE1LØ16–PIN0.115/0.195(2.921/4.953)0.014/0.022(0.356/0.559)0.045/0.070(1.143/1.778)0.008/0.014(0.203/0.356)18–PIN0.115/0.195(2.921/4.953)0.014/0.022(0.356/0.559)0.045/0.070(1.143/1.778)0.008/0.014(0.203/0.356)20–PIN0.115/0.195(2.921/4.953)0.014/0.022(0.356/0.559)0.045/0.070(1.143/1.778)0.008/0.014(0.203/0.356)0.780/0.8000.880/0.9200.980/1.060(19.812/20.320)(22.352/23.368)(24.892/26.924)0.300/0.325(7.620/8.255)0.240/0.280(6.096/7.112)0.115/0.150(2.921/3.810)0°/ 15°(0°/15°)0.300/0.325(7.620/8.255)0.240/0.280(6.096/7.112)0.115/0.150(2.921/3.810)0°/ 15°(0°/15°)0.300/0.325(7.620/8.255)0.240/0.280(6.096/7.112)0.115/0.150(2.921/3.810)0°/ 15°(0°/15°)Rev. 06/20/02SP202E Series High Performance RS232 Transceivers© Copyright 2002 Sipex Corporation
14
ORDERING INFORMATION
Model.......................................................................................Temperature Range................................................................................PackageSP202ECN.....................................................................................0°C to +70°C...........................................................................16–pin N–SOICSP202ECP.....................................................................................0°C to +70°C.......................................................................16–pin Plastic DIPSP202ECT.....................................................................................0°C to +70°C................................................................................16–pin SOICSP202EEN...................................................................................–40°C to +85°C..........................................................................16–pin N-SOICSP202EEP...................................................................................–40°C to +85°C.....................................................................16–pin Plastic DIPSP202EET...................................................................................–40°C to +85°C..............................................................................16–pin SOICSP232ECN.....................................................................................0°C to +70°C...........................................................................16–pin N–SOICSP232ECP.....................................................................................0°C to +70°C.......................................................................16–pin Plastic DIPSP232ECT.....................................................................................0°C to +70°C................................................................................16–pin SOICSP232EEN...................................................................................–40°C to +85°C..........................................................................16–pin N-SOICSP232EEP...................................................................................–40°C to +85°C.....................................................................16–pin Plastic DIPSP232EET...................................................................................–40°C to +85°C..............................................................................16–pin SOICSP233ECPSP233ECTSP233EEPSP233EETSP310ECPSP310ECTSP310ECASP310EEPSP310EETSP310EEASP312ECPSP312ECTSP312ECASP312EEPSP312EETSP312EEA
.....................................................................................0°C to +70°C.......................................................................20–pin Plastic DIP.....................................................................................0°C to +70°C................................................................................20–pin SOIC...................................................................................–40°C to +85°C.....................................................................20–pin Plastic DIP...................................................................................–40°C to +85°C..............................................................................20–pin SOIC.....................................................................................0°C to +70°C.......................................................................18–pin Plastic DIP.....................................................................................0°C to +70°C................................................................................18–pin SOIC.....................................................................................0°C to +70°C...............................................................................20–pin SSOP...................................................................................–40°C to +85°C.....................................................................18–pin Plastic DIP...................................................................................–40°C to +85°C..............................................................................18–pin SOIC...................................................................................–40°C to +85°C.............................................................................20–pin SSOP.....................................................................................0°C to +70°C.......................................................................18–pin Plastic DIP.....................................................................................0°C to +70°C................................................................................18–pin SOIC.....................................................................................0°C to +70°C...............................................................................20–pin SSOP...................................................................................–40°C to +85°C.....................................................................18–pin Plastic DIP...................................................................................–40°C to +85°C..............................................................................18–pin SOIC...................................................................................–40°C to +85°C.............................................................................20–pin SSOP
Please consult the factory for pricing and availability on a Tape-On-Reel option.
CorporationSIGNAL PROCESSING EXCELLENCESipex CorporationHeadquarters andSales Office22 Linnell CircleBillerica, MA 01821TEL: (978) 667-8700FAX: (978) 670-9001e-mail: sales@sipex.comSales Office
233 South Hillview DriveMilpitas, CA 95035TEL: (408) 934-7500FAX: (408) 935-7600
Sipex Corporation reserves the right to make changes to any products described herein. Sipex does not assume any liability arising out of theapplication or use of any product or circuit described hereing; neither does it convey any license under its patent rights nor the rights of others.
Rev. 06/20/02SP202E Series High Performance RS232 Transceivers© Copyright 2002 Sipex Corporation
15
因篇幅问题不能全部显示,请点此查看更多更全内容