您的当前位置:首页正文

大学生综合素质评价体系的构建及应用

2021-11-23 来源:好走旅游网


大学生综合素质评价体系的构建及应用

大学生综合素质评价体系的构建及应用

随着现代科学技术的迅猛发长,社会对人才提出了越来越高的要求,以前一些用人单位在选择大学毕业生时非常看重学生推荐书上的成绩,现在却更多强调人才的综合素质,越来越注重学生的实践能力和创新能力。社会对人才观念的这一变化,凸显提高大学生综合素质的重要性,与之相适应,我国高等教育改革中也更加注重大学生综合素质的培养,高等教育如何从“应试教育”向“素质教育”转变,培养高素质的综合型人才,是当前高教工作者面临的首要问题。由于大学生的综合素质受多种因素的影响,所以建立科学的评估体系和在此基础上改进培养模式是非常重要的,也是当前各高校在全面推进素质教育过程中所面临的一个十分现实的问题。

大学生综合素质评价体系的构建对于进一步推动大学生综合素质的培养工作十分重要。该评价体系的建立和应用,可以根据不同的评价目的与要求进行,它既有鉴定、诊断的作用,又具有选优和激励发展的功能。通过评价,可以激励大学生素质的发展与提高,推动高校大学生综合

1

素质的培养工作。

1、大学生综合素质评价体系的设计原则和设计方法

1)设计原则 导向性原则

坚持导向性原则,是指评价体系的建立和使用要在素质教育的指导思想、指定设定、权重分配等方面对评价对象的行为有引导作用,即能充分利用指标体系让学生的知识、能力、品格等得到全面和谐的发展,引导学生更加注重全面素质的提高。

全面性原则

指标体系应尽可能体现与素质教育相关的重要内容,能从多个层面,多个视角,多条主线反映学生的素质状况,以保证评价体系结果全面准确地反映大学生的素质与素质教育活动的成效。当然,全面性并不是把所有影响素质养成的因素包罗万象地一并加以考虑,而是对评价体系所涉及的内容进行科学筛选,并抓住影响和放映素质教育的关键性因素作为指标列出。

层次性原则

2

评价体系的设置层次应分明,应能准确反映各层次之间的支配关系,且要有明确的内涵,按照层次递进的关系,组成层次分明,结构合理,相互关联的整体,排除指标间的相容性,保证评价结果的科学性。

可行性原则

即可通过各种定量和定性手段对评价对象进行评测以得出明确的结论。评价体系的设计一定要从世界出发,设置的指标体系能在教育实践中获取足够的信息,使评价对象在这些项目上的状态进行量化描述,同时又要力求体系简化,对评价信息的统计方法简易,具有可操作性,做到“可比、可测、简易”。

2) 设计方法

首先,我们依照人才培养目标的要求和特点,在充分调查研究的基础上,对各类大学生应具备的基本素质结构进行认真分析,抽取出其中主要方面,分别建立比较全面和客观的评价指标内容。

其次,利用层次分析法对各项指标进行科学分类,并建立递阶层次结构,同时确定各项评价因素的内涵与评价等级标准,最后在充分征求各

3

方面意见基础上给出各评价因素的相对权重。

2、层次分析法的基本原理及一般步骤 层次分析法(Analytic Hierarchy Process 简记为AHP)(见文献[1])是美国著名的运筹学家T.L.Saaty教授于70年代初首先提出的一种定性与定量分析相结合的多准则决策方法。该方法是社会,经济系统决策的有效工具,目前在工程计划、 资源分配、方案排序、政策制定、冲突问题、性能评价等方面都有广泛的应用。

关于层次分析法的基本原理及一般步骤,详见有关的参考文献。

3、大学生综合素质的数学模型及评价体系的构建

1)大学生综合素质评价体系的构建 ① 建立层次结构

由参考文献[3]-[6]构建大学生综合素质测评方法,将大学生综合素质的评定分为德育、智育、体育、美育四个方面共十四项指标。分别为:社会责任(C1),集体观念(C2),诚实守信(C3)(该指标着重于道德修养方面),团队协作(C4),严谨勤奋(C5),实践能力(C6),创新

4

精神(C7),表达能力(C8),身体健康(C9),体育运动(C10),心理健康(C11)(该项指标着重于世界观、人生观和心理素质方面),人文修养(C12),文艺修养(C13),文明举止(C14)。

根据以上划分,用层次分析法构建的层次分析结构模型如图

4.1

所示:

图4.1 大学生综合素质评价层次分析结构模型

5

② 构造两两比较判断矩阵,计算相应的相对权重

A-B 表4.1 A B1 B2 W(2) B3 B4 B1 1 1/2 0.2523 2 2 B2 2 1 0.4761 3 4 B3 1/2 1/3 0.1170 1 1/2 B4 1/2 1/4 0.1547 2 1 =4.0968

(2)maxCI=0.0323 R(2)I=0.9

C(2)R=0.0359<0.1

B1-C 表4.2 B1 C1 C2 (3)1 C3 C4 C1 1 1 0.2389 1 1 6

C2 1 1 0.2087 1 1/2 C3 1 2 0.2994 1 2 C4 1 2 0.2530 1/2 1 max=4.185

(3)CR1CI1(3)=0.0618

(3)RI1=0.9

=0.0686<0.1

(3)B2-C 表4.3 B2 C5 C6  2C7 C8 C5 1 2 3 0.4324 2 C6 1/2 1 1 0.1903 1 C7 1/3 1 1 0.2128 2 C8 1/2 max (3) 1 0.1645 RI(23)1/2 1 =4.1179

CI2=0.0393 =0.9

CR(23)=0.043<0.1

B3-C 表4.4

7

4.5

B3 C9 C10 (3)3 C11 C9 1 2 0.3108 1/2 C10 1/2 1 0.1958 1/2 C11 2 2 0.4934 1 (3)max=3.0536

C(3)I3=0.0268

R3=0.58

C3)R(3=0.0462

B4-C 表

B4 C12 C13 (3)4 C14 C12 1 3 0.4286 1 C13 1/3 1 0.1429 1/3 C14 1 3 0.4286 1 max=3 C(3)I4=0

C(3)R4=0

8

③ 计算各层元素对目标A的合成权重

表4.6

K k(3)1 2 3 4 0.2087 0.1903 0.1958 0.1429 4.1179

0.2389 0.4324 0.3108 0.4286 0.2994 0.2530 0.2128 0.1645 0.4934 0 0.4286 0 k 4.185 3.0536 3 CIk 0.0618 0.0393 0.0268 0 (3)W(3)(2)

CI(3)(CI1(3)CI(23)CI(33)CI(43))W(2)于是由下列各式

RI(3)(RI1(3)RI(23)RI(33)RI(43))W(2)

9

CR(3)CI(3)RI(3)

得到

(3)=

0.23980.43240.31080.42860.20870.29940.25300.25230.23380.47610.25000.19030.21280.16450.19580.493400.11700.22940.14290.428600.15470.2263

=

CI(3)0.06180.03930.02680.25230.476100.11700.1547=0.0374

RI(3)=

0.25230.47610.90.90.5800.11700.1547=0.7234

由于CR(3)CI(3)RI(3).0374=0=0.052<0.1,故通过一致性检0.7234验。

根据以上计算可知,学生综合素质的四个方面的排序依次为:智育,德育,体育,美育。

④ 总排序判断矩阵

表4.7

10

C B1(德育) 3 B2(智育) B3(体B4(美总排序 育) 育) 0 0 0 7 0 0.067 02 0 0 0 0.059 26 0 0 0 0.03147 0 0 0 1 0.2520.4761 0.1170.154C1(社0.238会责任) C2(集0.208体观念) C3(诚0.137实守信) C4(团0.253结协作) C5(严谨勤奋) C6(实践能

11

9 7 6 0.066 38 0 0 0.4324 0 0 0.201 59 0 0.1903 0 0 0.093 06

力) C7(创新精神) C8(表达能力) C9(身体健康) C10(体育动) C11(心理康) C12(人文养) C13(文艺养)

12

0 0.2128 0 0 0.102 13 0 0.1645 0 0 0.074 83 0 0 0.3108 0 0.03163 0 0 0 0.1958 0 0.02129 2 运0 0 0.4934 0 0.058 77 健0 0 0 0.4280.065 6 63 修0 0 0 0.1420.0219 21 3 修

C14(文明止) CI=0.0374 RI=0.7234 举0 0 0 0.4280.065 6 63 CR=0.052<0.1

⑤ 结果分析

从以上分析得知,高校在培养全方位高素质人才的过程中,不但要注重学生综合素质的培养,同时也应该重点突出,分清主次。本文所得到的大学生综合素质评定的四个方面排序为:智育、德育、体育、美育,与当前高等教育方针基本一致。由表4.7对十四项指标的排序可知:“严谨勤奋”的权重排序名列第一,“创新精神”的权重名列第二,接下来是“实践能力”和“表达能力”等等。

2)大学生综合素质的数学模型 ① 模型的建立

对于大学生综合素质评价,应综合考虑各方面的因素,让每一个因素都对综合评价有所贡献,本评价方法采用加权平均型的综合评判(见

13

文献[3])。

综合素质评价数学模型:

U(综合素质得分)=J(德育得分)+P(智

育得分)

+S(体育得分)+T(美育得分)

综合素质评价数学模型:

第一级指标评价数学模型:

UNA

ii上式中,N表示第一级指标项评价得分,A表示各指标项权重系数,下标i 表示第一级各指标项的内容。

第二级指标评价数学模型:

NBA

iijij上式中,B表示第二级指标项得分,下标j 表示第二级各指标项的内容。

② 计算实例

以2007级信科专业的40名学生作为评价对象进行测评,以说明本文所建立的评价体系及其数学模型的适用性。

在以上计算的基础上再引入几个要用到的方法步骤:

14

Step 1. 建立评语集

因为评语集是以评价的各种可能的结果为因素所组成的集合,不论因素分为多少类,评语集只有一个。这里设评语集

F={优秀,良好,中等,及格,差}={90,80,70,60,50}。

TStep 2. 隶属函数及评判矩阵的确定 确定隶属函数的方法多种多样,没有固定模式,这里采用请同学打分的方式得到各因素的隶属关系,进而得到评价矩阵R或称模糊矩阵R。

iiStep3. 模糊变换 设模糊评价矩阵R=

ir11r12r21r22LLrm1rm2LLLLr1nr2nLrm3,其中r表

ij示对第i个评价指标作出的第j级评语的隶属度。由2001级信科的40位同学作为评估组互相评估,用已经确定的评语集对各学生的综合素质14个指标进行评定。 Step 4. 计算综合评价值

综合评价值B=AR,则待评学生的综合素质

ii的评价结果N,

ii1nNiBiF。

下面以一个学生为例,并仅对该学生的德育模块进行详细计算:

15

表4.8

A层 名称 权 评价权重 指标 德 0.2 学 生 综 合 素 质 评 价 社会重 0.20.20.20.20.40.10.20.1B层 C层 评价等级和评分 优秀 良好 中等 及格 差 20 15 5

0 0 18 10 10

2 0 20 8 12

0 0 18 10 10

2 0 35 5 0

0 0 10 12 8

10 0 5 10 18

6 1 10 9 15

6 0 责任 389 观念 087 诚实团结严谨守信 994 协作 530 育 523 集体智 0.4勤奋 324 能力 963 创新表达精神 128 能力 963 育 761 实践 16

体 身体0.30.10.40.40.10.430 8 2

0 0 15 10 12

3 0 8 20 10

2 0 10 15 12

3 0 2 10 25

3 0 16 15 5

4 0 0000育 0.11健康 108 70 体育心理美 人文运动 958 健康 934 育 0.1修养 286 修养 429 文明此模块的模糊矩阵

R1547 文艺举止 286

0000020/4015/405/4018/4010/4010/402/4020/408/4012/40018/4010/4010/402/40=

0.50.3750.12500.450.250.250.050.50.20.300.450.250.250.05

评价结果:

B1A1R1[0.23890.20870.29940.50.3750.12500.450.250.250.050.2530]0.50.20.300.450.250.250.050000

17

=0.4769B10.26490.23510.02310

的计算结果表明,对该大学生的德育模块

的各因素综合评价是:有47.7%的同学赞成评为优秀,有26.5%的同学赞成评为良好,有23.5%的同学赞成评为

中等,有2.3%的同学赞成评为及格,无人赞成评为差。所以此同学在智育模块得分为:

N1=90*47.7%+80*26.5%+70*23.5%+60*2.3%=7

1.96

同理,对该学生智育、体育、美育的评价结果可

得模糊矩阵R,R,R,也能

234得出:

B2=

0.19760.27150.03940.085740.50310.21030.2086B30.11040.0053=0.4052=0.28570.35780.3572300

B42由此算出N=79.9,N=81.3,N=75.7。所以此学生的综合素质得分为

UJPST71.960.252379.90.476181.30.117075.70.154768.4

按照这个评价体系和数学模型,对20001级信科

18

班40名学生得出的测评结果为:最高分96分、最低分50分。测评结果与学生的实际情况非常相符。

4、结论

经过测评结果得出:此评价体系从各个层面、多条主线反映了学生的素质状况。大学生综合素质评定是一个比较复杂的问题,涉及到很多因素,AHP法和模糊综合评价法比较适用于这种复杂的情况,该方法具有一定的代表性和客观性。本文给出的评价体系反映出不同学生在德育、智育、体育、美育等方面的差异性,比较全面地体现了与素质教育相关的重要内容,使我们能够很清晰的看出大学生各方面素质的情况。该评价体系不仅具有一定的科学性,还具有较好的可操作性。各项素质内容都可以实测计算,虽然有一定的模糊性,但各项指标均具有可测性。

总之,大学生综合素质评价的难点是评价指标体系的构建,更需要做深入的研究和探讨,这个评价体系的构建对于进一步推动大学生综合素质的培养工作至关重要。该评价体系的建立和应用,可以根据不同的评价目的与要求进行,它

19

既有鉴定,症断的作用,又具有优选和激励发展的功能。通过评价,激励大学生素质的发展与提高,推动高校大学生综合素质的培养工作,具有实用性。为高校确立合理的教学目标和人才培养模式提供借鉴。

参考文献

[3]万远英,尹德志.大学生综合素质层次分析评

价体系及其数学模型,西南民族大学学报(人文社科版),2003,24(12):192-193. [4]毛军劝.大学生综合素质评价系统的设计与

评价方法的研究.上海理工大学学报,2002,24(6).

[5]乌力更.大学生综合素质评价体系的构建与

应用.内蒙古工业大学学报,2002,11(2). [6]刘先霞,何灿芝.提高大学生综合素质的层次

分析,数学理论与应用,2000,20(1).

20

因篇幅问题不能全部显示,请点此查看更多更全内容