您的当前位置:首页正文

On the existence of periodic solutions for a class of generalized forced Liénard equations

2023-09-12 来源:好走旅游网
AppliedMathematicsLetters20(2007)248–254

www.elsevier.com/locate/aml

Ontheexistenceofperiodicsolutionsforaclassofgeneralized

forcedLi´enardequations✩

M.R.Pournakia,∗,A.Razanib,a

aSchoolofMathematics,InstituteforStudiesinTheoreticalPhysicsandMathematics,P.O.Box19395-5746,Tehran,Iran

bDepartmentofMathematics,FacultyofScience,ImamKhomeiniInternationalUniversity,P.O.Box34194-288,Qazvin,Iran

Received14July2005;receivedinrevisedform28May2006;accepted2June2006

Abstract

󰀓󰀁

Inthisworkthesecond-ordergeneralizedforcedLi´enardequationx󰀇󰀇+f(x)+k(x)x󰀇x󰀇+g(x)=p(t)isconsideredandanewconditionforguaranteeingtheexistenceofatleastoneperiodicsolutionforthisequationisgiven.c2006ElsevierLtd.Allrightsreserved.󰀃

Keywords:Nonlinearboundaryvalueproblem;Li´enardequation;Periodicsolution;Banachspace;Schauder’sFixedPointTheorem

1.Introduction

Inthisworkweinvestigatetheexistenceofperiodicsolutionsforaclassofsecond-ordergeneralizedforcedLi´enardequations

󰀁󰀓

(1.1)x󰀇󰀇+f(x)+k(x)x󰀇x󰀇+g(x)=p(t),wheref,k,andgarerealfunctionsonRandpisaT-periodicrealfunctionon[0,T],T>0.Generalizedforced

Li´enardequationsappearinanumberofphysicalmodelsandanimportantquestioniswhethertheseequationscansupportperiodicsolutions.Thisquestionhasbeenstudiedextensivelybyanumberofauthors;seeforexample[1–9].Inparticular,therearesomeexistenceandmultiplicityresultsforsuchequationswithnonconstantforcedterms;seeforexample[10–19].Inthisdirection,wewillobtainanewconditiontoguaranteetheexistenceofatleastoneperiodicsolutionfor(1.1)withanonconstantforcedterm.Themainpurposeofthisworkistoprovethefollowingresult:MainTheorem.Supposef,k,andgarerealfunctionsonRwhicharelocallyLipschitzandpisanonconstant,continuous,T-periodicrealfunctionon[0,T],T>0.Alsosupposeallsolutionsoftheinitialvalueproblem(1.1)canbeextendedto[0,T].Ifthereexistrealnumbersa1anda2forwhichg(a1)≤p(t)≤g(a2)holdsforeach0≤t≤T,thenEq.(1.1)hasatleastoneperiodicsolution.

✩ThisresearchwasinpartsupportedbyagrantfromIPM.∗Correspondingauthor.

E-mailaddresses:pournaki@ipm.ir(M.R.Pournaki),razani@ikiu.ac.ir(A.Razani).c2006ElsevierLtd.Allrightsreserved.0893-9659/$-seefrontmatter󰀃

doi:10.1016/j.aml.2006.06.004

M.R.Pournaki,A.Razani/AppliedMathematicsLetters20(2007)248–254249

Therestoftheworkisorganizedasfollows.InSection2,weprovethat(1.1)hasauniquesolutionsatisfyingcertainconditionsbyapplyingSchauder’sFixedPointTheorem.InSection3,theexistenceofatleastoneperiodicsolutionfor(1.1)whenghasthepropertymentionedintheMainTheoremisproved.2.Anexistenceanduniquenesstyperesult

WestartthissectionbyrecallingafamousfixedpointtheoremwhichwasoriginallyduetoSchauder:LetXbeaBanachspaceandΩbeaclosed,bounded,andconvexsubspaceofX.IfS:Ω→Ωisacompactoperator,thenShasatleastonefixedpointonΩ.

WenowstateandprovethefollowingexistenceanduniquenesstyperesultwhichisakeytoolforprovingtheMainTheorem.

Proposition2.1.Leta10berealnumbersandconsiderA=max{2|a1|,2|a2|}.Supposef,k,andgarerealfunctionsonRwhicharelocallyLipschitzandatleastoneofthef,k,orgisnonconstanton|x|≤A;andpisacontinuousT-periodicrealfunctionon[0,T],T>0.AlsosupposeM0isthemaximumvalueof|p|on

󰀇,M󰀇,M󰀇aretheLipschitzconstants[0,T];M1,M2,M3arethemaximumvaluesof|f|,|k|,|g|on|x|≤A;andM123

off,k,gon|x|≤A,respectively.Consider

M=

2

󰀇B2+(2M+M󰀇)B+M󰀇+M,M22113

󰀎󰀏√√1

N=,and0M2B2+M1B+M3+M0

(2.1)

Thenforeacha1≤b≤a2,Eq.(1.1)hasauniquesolutionx(t),satisfying

x(0)=x(T0)=b,

forwhich|x(t)|≤Aand|x󰀇(t)|≤Bholdforeach0≤t≤T0.

Proof.Considertheequationx󰀇󰀇=0withboundaryconditionx(0)=x(T0)=b.TheexistenceofaGreen’sfunctionforatypicaltwo-endpointproblemwassuggestedbyasimplephysicalexamplein[20]andisasfollows:

󰀇

s(t−T0)/T0:if0≤s≤t≤T0,

G(t,s)=

t(s−T0)/T0:if0≤t≤s≤T0.Ifwenowconsidertheintegralequation

󰀍T0

󰀓󰀓󰀁󰀁

x(t)=b+G(t,s)f(x(s))+k(x(s))x󰀇(s)x󰀇(s)+g(x(s))−p(s)ds,

0

(2.2)

thenitiseasytoseethatthesolutionsof(2.2)areexactlythesolutionsof(1.1)satisfying(2.1).Hence,toprovetheproposition,itisenoughtoshowthat(2.2)hasauniquesolutionx(t)satisfying|x(t)|≤Aand|x󰀇(t)|≤Bforeach0≤t≤T0.Inordertodoso,supposeX=C1([0,T0],R),andforφ∈Xdefine

󰀖φ󰀖=max|φ(t)|+max|φ󰀇(t)|.

0≤t≤T0

0≤t≤T0

ItisclearthatXisaBanachspace.Now,consider

󰀃󰀂

Ω=φ∈X:|φ(t)|≤Aand|φ󰀇(t)|≤Bholdforeach0≤t≤T0,

whichisobviouslyaclosed,bounded,andconvexsubspaceofX.DefinetheoperatorS:Ω→XbymappingφtoS(φ),whereS(φ)isdefinedby

󰀍T0

󰀓󰀓󰀁󰀁

S(φ)(t)=b+G(t,s)f(φ(s))+k(φ(s))φ󰀇(s)φ󰀇(s)+g(φ(s))−p(s)ds.

0

250M.R.Pournaki,A.Razani/AppliedMathematicsLetters20(2007)248–254

First,weshowthatSmapsΩintoitself.Inordertodothis,notethatforeachx,x󰀇,andtsuchthat|x|≤A,|x󰀇|≤B,and0≤t≤T0wehave

󰀄󰀄󰀓󰀁

󰀄f(x)+k(x)x󰀇x󰀇+g(x)−p(t)󰀄≤M2B2+M1B+M3+M0

1

(2.3)=.

NAlsoforeach0≤t≤T0wehave

󰀍T0

1T02

,|G(t,s)|ds=t(T0−t)≤

280

󰀍and

0T0

󰀄󰀄

󰀄󰀄∂

󰀄G(t,s)󰀄ds=1t2−t+1T0≤T0.

󰀄󰀄∂tT022

Hence(2.3)impliesthatforeachφ∈Ωand0≤t≤T0,

󰀍1T0

|G(t,s)|ds|S(φ)(t)|≤|b|+

N0T02

≤|b|+

8NAA+≤22=A,and

󰀄󰀍T0󰀄

󰀄󰀄∂1󰀄G(t,s)󰀄ds|S(φ)󰀇(t)|≤󰀄N0󰀄∂t

T0≤2N≤B.

Thesemeanthatforeachφ∈Ω,S(φ)∈ΩandthereforeSisanoperatorfromΩtoΩ.

Next,weshowthatSisacompactoperatoronΩ.Forthis,itisenoughtoshowthateachboundedsequence{φn}onΩhasasubsequence{φni}forwhich{S(φni)}isconvergentonΩ.Therefore,let{φn}beagivensequenceonΩwhichisautomaticallyboundedbydefinitionofΩ.Suppose󰀂>0isgiven.SinceGisauniformlycontinuousfunctionon[0,T0]×[0,T0],thereexistsδ,0<δ<󰀂N,suchthat(t1,s1),(t2,s2)∈[0,T0]×[0,T0]and󰀐

(t1−t2)2+(s1−s2)2<δimplythat|G(t1,s1)−G(t2,s2)|<󰀂N/2T0.Byapplying(2.3)wenowconcludethatforeachnandforeacht1,t2∈[0,T0],if|t1−t2|<δ,then

󰀍1T0

|G(t1,s)−G(t2,s)|ds<󰀂,and|S(φn)(t1)−S(φn)(t2)|≤

N0

󰀄󰀍T0󰀄

󰀄󰀄1∂∂󰀄G(t1,s)−G(t2,s)󰀄ds=1|t1−t2|<󰀂.|S(φn)󰀇(t1)−S(φn)󰀇(t2)|≤󰀄N0󰀄∂t∂tNHence{S(φn)(t)}and{S(φn)󰀇(t)}areequicontinuousfamiliesoffunctionson[0,T0]andbytheclassical

Ascoli–ArzelaTheorem,thereexistsasubsequence{φni(t)}of{φn(t)}forwhich{S(φni)(t)}and{S(φni)󰀇(t)}areuniformlyconvergenton[0,T0].Thisshowsthat{S(φni)}isconvergentonΩandsoSisacompactoperator.

Therefore,bySchauder’sFixedPointTheorem,thereexistsφ∈ΩsuchthatS(φ)=φ.Soforeach0≤t≤T0,wehaveS(φ)(t)=φ(t)whichistosay

󰀍T0

󰀓󰀁G(t,s)(f(φ(s))+k(φ(s))φ󰀇(s))φ󰀇(s)+g(φ(s))−p(s)ds.φ(t)=b+

0

Thismeansthatφ∈Ωisasolutionof(2.2).Thereforeφisasolutionof(1.1)whichsatisfies(2.1)insuchawaythat

|φ(t)|≤Aand|φ󰀇(t)|≤Bforeach0≤t≤T0.

Wenowshowthatφistheuniquesolutionof(1.1)whichsatisfiestheaboveconditions.Supposeψisanothersolutionof(1.1)whichsatisfiestheboundarycondition(2.1)suchthat|ψ(t)|≤Aand|ψ󰀇(t)|≤Bholdforeach0≤t≤T0.Thismeansthatψ∈Ω,ψ=φ,andS(ψ)=ψ.BythelocallyLipschitzconditionforf,k,andg,note

M.R.Pournaki,A.Razani/AppliedMathematicsLetters20(2007)248–254251

thatforeachx,y,x󰀇,y󰀇,andtsuchthat|x|≤A,|y|≤A,|x󰀇|≤B,|y󰀇|≤B,and0≤t≤T0wehave

󰀄󰀓󰀓󰀁󰀓󰀓󰀁󰀄󰀁󰀁

󰀄f(x)+k(x)x󰀇x󰀇+g(x)−p(t)−f(y)+k(y)y󰀇y󰀇+g(y)−p(t)󰀄

=|(f(x)−f(y))x󰀇+f(y)(x󰀇−y󰀇)+(k(x)−k(y))x󰀇+k(y)(x󰀇−y󰀇)+g(x)−g(y)|

󰀇2󰀇󰀇

≤(M2B+M1B+M3)|x−y|+(2M2B+M1)|x󰀇−y󰀇|.

2

2

2

Thereforebytheaboveinequality,foreach0≤t≤T0,

󰀆T02󰀅󰀇2󰀇󰀇

M2B+(2M2+M1)B+M3+M1󰀖φ−ψ󰀖|S(φ)(t)−S(ψ)(t)|≤8T022=󰀖φ−ψ󰀖

8MT02

󰀖φ−ψ󰀖,and=

4M

󰀆T0󰀅󰀇2󰀇󰀇󰀇󰀇

M2B+(2M2+M1)B+M3+M1󰀖φ−ψ󰀖|S(φ)(t)−S(ψ)(t)|≤2T02

󰀖φ−ψ󰀖=

2MT0=󰀖φ−ψ󰀖.M

Hence,

󰀖φ−ψ󰀖=󰀖S(φ)−S(ψ)󰀖

=max|S(φ)(t)−S(ψ)(t)|+max|S(φ)󰀇(t)−S(ψ)󰀇(t)|0≤t≤T00≤t≤T0󰀉󰀊

T0T02+≤󰀖φ−ψ󰀖.4MM

ThereforeweobtainT02+4T0≥4M,orT0≥2M+1−2whichiscontradictorywiththedefinitionofT0.Soφistheuniquesolutionof(1.1),satisfyingthegivenconditions.󰀁Theabovepropositionimpliesthefollowingexistenceresult.

Corollary2.2.LetkbealocallyLipschitzrealfunctiononRwhichisnonconstantoneachcompactinterval.ThenforeachgivenT0>0andb,thefollowingboundaryvalueproblem:

󰀇󰀇󰀇2

x+k(x)x󰀇=0,x(0)=x(T0)=b,hasasolution.

Proof.WeapplyProposition2.1withp=0,saydefinedon[0,T],T>0.Supposea1anda2aretworealnumberssuchthata10bearbitrary.SupposeM2isthemaximum

󰀇istheLipschitzconstantofkon|x|≤A.Considervalueof|k|on|x|≤AandM2

2

󰀇B2+2MB,M221

N=,

M2B2

andchooseBsmallenoughandalsoTlargeenoughsuchthat

󰀒󰀋󰀌√

22A2

T0M=

Proposition2.1nowimpliesthatthegivenboundaryvalueproblemhasasolution.Notethatthissolutionwithrestrictions|x(t)|≤Aand|x󰀇(t)|≤Bforeach0≤t≤T0isunique.󰀁

252M.R.Pournaki,A.Razani/AppliedMathematicsLetters20(2007)248–254

3.ProofoftheMainTheorem

InthissectionweprovetheMainTheorem.Bytheassumptionweconcludea1=a2andsowithoutlossofgeneralitywecansupposethata1󰀇g(x):ifx≤a1,

g˜(x)=

g(a1)+a1−x:ifx>a1,and

gˆ(x)=

󰀇

g(x)

g(a2)+a2−x

:ifx≥a2,:ifxConsiderA=max{2|a1|,2|a2|}andsupposeB>0isarbitrary.LetM0bethemaximumvalueof|p|on[0,T];M1,

󰀇,M󰀇,M󰀇,M˜󰀇,Mˆ󰀇bethe˜3,Mˆ3bethemaximumvaluesof|f|,|k|,|g|,|g˜|,|gˆ|on|x|≤A;andM1M2,M3,M2333

Lipschitzconstantsoff,k,g,g˜,gˆon|x|≤A,respectively.Consider

2

󰀇B2+(2M+M󰀇)B+M󰀇+M,M22113

1

,N=

M2B2+M1B+M3+M0

2˜=M,

󰀇󰀇󰀇˜2MB+(2M2+M)B+M+M1M=

2

1

3

˜=Nˆ=Mˆ=N

1

˜3+M0M2B2+M1B+M

2

󰀇B2M2

,

,

,and

ˆ3+M0M2B2+M1B+M˜,Lˆ},where0󰀎󰀏√√

L=minT,2AN,2BN,2M+1−2,

󰀇󰀈󰀑󰀐

˜=minT,2AN˜+1−2,˜,2BN˜,2ML

󰀑󰀈󰀇󰀐

ˆ,2BNˆ,2Mˆ+1−2.ˆ=minT,2ANL

+(2M2+1

󰀇)BM1

ˆ󰀇+M1+M3

and

Proposition2.1nowimpliesthatforeacha1≤b≤a2,theEq.(1.1)hasauniquesolution,sayxb(t),satisfying

󰀇(t)|≤Bholdforeach0≤t≤T.xb(0)=xb(T0)=bforwhich|xb(t)|≤Aand|xb0Lemma3.1.Foreach0≤t≤T0,wehavexa1(t)≤a1Proof.First,weprovethatxa1(t)≤a1holdsforeach0≤t≤T0.ByProposition2.1,theequation

󰀁󰀓

x󰀇󰀇+f(x)+k(x)x󰀇x󰀇+g˜(x)=p(t)

hasauniquesolutionx(t)satisfyingx(0)=x(T0)=a1forwhich|x(t)|≤Aand|x󰀇(t)|≤Bholdforeach0≤t≤T0.Weclaimthatx(t)≤a1holdsforeach0≤t≤T0.Suppose,forthepurposeofacontradiction,there

˜)>a1.Thereforethefunctionx(t)−a1hasapositivemaximumontheinterval˜≤T0suchthatx(texistsapoint0≤t

(0,T0),sayatt1.Hence(x(t)−a1)󰀇|t=t1=0,orx󰀇(t1)=0.Thereforewehaveestablished

󰀓󰀁

˜(x(t1))+p(t1)x󰀇󰀇(t1)=−f(x(t1))+k(x(t1))x󰀇(t1)x󰀇(t1)−g

=−g˜(x(t1))+p(t1)

M.R.Pournaki,A.Razani/AppliedMathematicsLetters20(2007)248–254253

=−g(a1)−a1+x(t1)+p(t1)=(p(t1)−g(a1))+(x(t1)−a1)>0.

Thisimpliesthat(x(t)−a1)󰀇󰀇|t=t1>0,whichisacontradictionsincex(t)−a1hasamaximumatt1.Thereforefor

˜,g˜(x(t))=g(x(t))holdsforeach0≤t≤T0.Thismeanseach0≤t≤T0,x(t)≤a1andsobythedefinitionofg

thatx(t)isasolutionof(1.1)satisfyingx(0)=x(T0)=a1forwhich|x(t)|≤Aand|x󰀇(t)|≤Bholdforeach0≤t≤T0.Theuniquenesspropertynowimpliesthatforeach0≤t≤T0,x(t)=xa1(t)andsoxa1(t)≤a1holdsforeach0≤t≤T0.

Next,weprovethata2≤xa2(t)holdsforeach0≤t≤T0.ByProposition2.1,theequation

󰀁󰀓

ˆ(x)=p(t)x󰀇󰀇+f(x)+k(x)x󰀇x󰀇+ghasauniquesolutionx(t)satisfyingx(0)=x(T0)=a2forwhich|x(t)|≤Aand|x󰀇(t)|≤Bholdforeach

0≤t≤T0.Weclaimthata2≤x(t)holdsforeach0≤t≤T0.Suppose,forthepurposeofacontradiction,there

ˆ≤T0suchthata2>x(tˆ).Thereforethefunctionx(t)−a2hasanegativeminimumontheintervalexistsapoint0≤t

󰀇(0,T0),sayatt2.Hence(x(t)−a2)|t=t2=0,orx󰀇(t2)=0.Thereforewehaveestablished

󰀓󰀁

x󰀇󰀇(t2)=−f(x(t2))+k(x(t2))x󰀇(t2)x󰀇(t2)−gˆ(x(t2))+p(t2)

=−gˆ(x(t2))+p(t2)

=−g(a2)−a2+x(t2)+p(t2)=(p(t2)−g(a2))+(x(t2)−a2)<0.

Thisimpliesthat(x(t)−a2)󰀇󰀇|t=t2<0,whichisacontradictionsincex(t)−a2hasaminimumatt2.Thereforefor

ˆ,gˆ(x(t))=g(x(t))holdsforeach0≤t≤T0.Thismeanseach0≤t≤T0,a2≤x(t)andsobythedefinitionofg

thatx(t)isasolutionof(1.1)satisfyingx(0)=x(T0)=a2forwhich|x(t)|≤Aand|x󰀇(t)|≤Bholdforeach0≤t≤T0.Theuniquenesspropertynowimpliesthatforeach0≤t≤T0,x(t)=xa2(t)andsoa2≤xa2(t)holdsforeach0≤t≤T0.󰀁

ˆa1≤bˆ≤a2,suchthatx󰀇ˆ(0)=x󰀇ˆ(T0).Lemma3.2.Thereexistsb,bbProof.Definethefunctionθon[a1,a2]by

θ(b)=x󰀇b(0)−x󰀇b(T0).

UsingtheAscoli–ArzelaTheorem,onemayeasilyverifythatbothxb(t)andx󰀇b(t)arecontinuouson[0,T0]×[a1,a2].

Thisimpliesthatθiscontinuousalso.Ontheotherhand,notethatfori∈{1,2},

󰀇

(0)=limxai

t→0+

xai(t)−ai

,t

󰀇xa(T0)=limi

t→0+

ai−xai(T0−t)

,

t

andtherefore,

θ(ai)=x󰀇ai(0)−x󰀇ai(T0)

xai(t)+xai(T0−t)−2ai

=lim.

tt→0+

ˆ,a1≤bˆ≤a2,suchthatθ(bˆ)=0,orSobyLemma3.1,weobtainθ(a1)≤0andθ(a2)≥0.Hencethereexistsb

󰀇(T).x󰀇b󰀁ˆ(0)=xbˆ0

Thereforexbˆ(t)isasolutionof(1.1)satisfyingthefollowingperiodicboundaryconditions:

󰀇x󰀇bˆ(0)=xbˆ(T0).

xbˆ(0)=xbˆ(T0),

Byamethodsimilartotheoneusedin[21],wenowextendxbˆ(t)periodicallywithperiodT0toobtainaperiodicsolutionoftheEq.(1.1).Notethatthisperiodicsolutionisnontrivial,sincepisanonconstantforcedfunction.󰀁

254M.R.Pournaki,A.Razani/AppliedMathematicsLetters20(2007)248–254

Acknowledgments

ThisworkwasdonewhilethefirstauthorwasaPostdoctoralResearchAssociateattheSchoolofMathematics,InstituteforStudiesinTheoreticalPhysicsandMathematics(IPM).BothoftheauthorswouldliketothanktheIPMforfinancialsupport.Alsotheauthorswouldliketothanktherefereeforhis/herinterestinthesubjectandmakingusefulsuggestionsandcommentswhichledtoimprovementofthefirstdraft.References

[1]A.Capietto,Z.Wang,PeriodicsolutionsofLi´enardequationswithasymmetricnonlinearitiesatresonance,J.LondonMath.Soc.(2)68(1)

(2003)119–132.

[2]A.Capietto,Z.Wang,PeriodicsolutionsofLi´enardequationsatresonance,Differ.Integral.Equ.16(5)(2003)605–624.[3]S.K.Chang,H.S.Chang,ExistenceofperiodicsolutionsofnonlinearsystemsofageneralizedLi´enardtype,KyungpookMath.J.39(2)

(1999)351–365.

[4]E.Esmailzadeh,B.Mehri,G.Nakhaie-Jazar,Periodicsolutionofasecondorder,autonomous,nonlinearsystem,NonlinearDynam.10(4)

(1996)307–316.

[5]J.F.Jiang,Theglobalstabilityofaclassofsecondorderdifferentialequations,NonlinearAnal.28(5)(1997)855–870.

˙+f2(x)x˙2+g(x)=0,J.Math.Anal.Appl.194(3)(1995)[6]J.F.Jiang,Onthequalitativebehaviorofsolutionsoftheequationx¨+f1(x)x

597–611.

[7]G.Villari,OntheexistenceofperiodicsolutionsforLi´enard’sequation,NonlinearAnal.7(1)(1983)71–78.[8]Z.H.Zheng,PeriodicsolutionsofgeneralizedLi´enardequations,J.Math.Anal.Appl.148(1)(1990)1–10.[9]J.Zhou,OntheexistenceanduniquenessofperiodicsolutionsforLi´enard-typeequations,NonlinearAnal.27(12)(1996)1463–1470.[10]H.B.Chen,K.T.Li,D.S.Li,ExistenceofexactlyoneandtwoperiodicsolutionsoftheLi´enardequation,ActaMath.Sinica47(3)(2004)

417–424.

[11]H.B.Chen,Y.Li,Exactmultiplicityforperiodicsolutionsofafirst-orderdifferentialequation,J.Math.Anal.Appl.292(2)(2004)415–422.[12]H.B.Chen,Y.Li,X.Hou,ExactmultiplicityforperiodicsolutionsofDuffingtype,NonlinearAnal.55(1–2)(2003)115–124.

[13]G.Katriel,UniquenessofperiodicsolutionsforasymptoticallylinearDuffingequationswithstrongforcing,Topol.MethodsNonlinearAnal.

12(2)(1998)263–274.

[14]A.Zitan,R.Ortega,ExistenceofasymptoticallystableperiodicsolutionsofaforcedequationofLi´enardtype,NonlinearAnal.22(8)(1994)

993–1003.

[15]J.Mawhin,TopologicalDegreeandBoundaryValueProblemsforNonlinearDifferentialEquations,in:LectureNotesinMathematics,vol.

1537,Springer-Verlag,Berlin,1993.

[16]A.C.Lazer,P.J.McKenna,OntheexistenceofstableperiodicsolutionsofdifferentialequationsofDuffingtype,Proc.Amer.Math.Soc.110

(1)(1990)125–133.

[17]R.Ortega,StabilityandindexofperiodicsolutionsofanequationofDuffingtype,Boll.Un.Mat.Ital.B7(3)(1989)533–546.[18]G.Tarantello,Onthenumberofsolutionsfortheforcedpendulumequation,J.DifferentialEquations80(1)(1989)79–93.

[19]C.Fabry,J.Mawhin,M.N.Nkashama,Amultiplicityresultforperiodicsolutionsofforcednonlinearsecondorderordinarydifferential

equations,Bull.LondonMath.Soc.18(2)(1986)173–180.

[20]G.Birkhoff,G.G.Rota,OrdinaryDifferentialEquations,thirded.,JohnWileyandSons,1978.[21]L.Caser,AsymptoticBehaviorandStabilityProblems,seconded.,Springer-Verlag,Berlin,1963.

因篇幅问题不能全部显示,请点此查看更多更全内容