您的当前位置:首页正文

最新小学六年级数学易错题难题训练含详细答案

2024-03-02 来源:好走旅游网
最新小学六年级数学易错题难题训练含详细答案

一、培优题易错题

1.如图,用相同的小正方形按照某种规律进行摆放,则第6个图形中小正方形的个数是________,第n(n为正整数)个图形中小正方形的个数是________(用含n的代数式表

示).

【答案】55;(n+1)2+n

【解析】【解答】第1个图形共有小正方形的个数为2×2+1;第2个图形共有小正方形的个数为3×3+2;

第3个图形共有小正方形的个数为4×4+3; …;

则第n个图形共有小正方形的个数为(n+1)2+n, 所以第6个图形共有小正方形的个数为:7×7+6=55. 故答案为:55;(n+1)2+n

【分析】观察图形规律,第1个图形共有小正方形的个数为2×2+1;第2个图形共有小正方形的个数为3×3+2;则第n个图形共有小正方形的个数为(n+1)2+n,找出一般规律.

2.某儿童服装店老板以32元的价格买进30件连衣裙,针对不同的顾客,30件连衣裙的售价不完全相同,若以45元为标准,将超过的钱数记为正,不足的钱数记为负,记录结果如下表:

售出件数 7 6 3 5 4 5 售价(元) +2 +2 +1 0 ﹣1 ﹣2 请问,该服装店售完这30件连衣裙后,赚了多少钱?

【答案】解:由题意可得,该服装店在售完这30件连衣裙后,赚的钱数为: (45-32)×30+[7×2+6×2+3×1+5×0+4×(-1)+5×(-2)] =13×30+[14+12+3+(-4)+(-10)] =390+15 =405(元),

即该服装店在售完这30件连衣裙后,赚了405元

【解析】【分析】根据表格计算售出件数与售价积的和,再以45元为标准32元的价格买进30件,求出差价,计算即可.

3.如图,一只甲虫在5×5的方格(每小格边长为1)上沿着网格线运动.它从A处出发去看望B、C、D处的其它甲虫,规定:向上向右走均为正,向下向左走均为负.如果从A到

B记为:A→B(+1,+4),从B到A记为:B→A(﹣1,﹣4),其中第一个数表示左右方向,第二个数表示上下方向.

(1)图中A→C(________,________),B→C(________,________),C→________(+1,﹣2);

(2)若这只甲虫从A处去甲虫P处的行走路线依次为(+2,+2),(+2,﹣1),(﹣2,+3),(﹣1,﹣2),请在图中标出P的位置;

(3)若这只甲虫的行走路线为A→B→C→D,请计算该甲虫走过的路程.

(4)若图中另有两个格点M、N,且M→A(3﹣a,b﹣4),M→N(5﹣a,b﹣2),则N→A应记为什么?

【答案】(1)+3;+4;+2;0;D (2)解:P点位置如图1所示;

(3)解:如图2,

根据已知条件可知:

A→B表示为:(1,4),B→C记为(2,0)C→D记为(1,﹣2); 则该甲虫走过的路线长为:1+4+2+1+2=10

(4)解:由M→A(3﹣a,b﹣4),M→N(5﹣a,b﹣2), 所以,5﹣a﹣(3﹣a)=2,b﹣2﹣(b﹣4)=2, 所以,点A向右走2个格点,向上走2个格点到点N, 所以,N→A应记为(﹣2,﹣2)

【解析】【解答】解:(1)图中A→C(+3,+4),B→C(+2,0),C→D(+1,﹣2); 故答案为:(+3,+4),(+2,0),D;

【分析】(1)根据向上向右走均为正,向下向左走均为负确定数据即可; (2)根据所给的路线确定点的位置即可; (3)根据表示的路线确定长度相加可得结果;

(4)观察点的变化情况,根据(1)即可确定点走了格数,从而确定结论.

4.如图,一只甲虫在5×5的方格(每小格边长为1)上沿着网格线运动.它从A处出发去看望B、C、D处的其它甲虫,规定:向上向右走均为正,向下向左走均为负.如果从A到B记为:A→B(+1,+4),从B到A记为:B→A(﹣1,﹣4),其中第一个数表示左右方向,第二个数表示上下方向.

(1)图中A→C(________,________),B→C(________,________),C→________(+1,﹣2);

(2)若这只甲虫从A处去甲虫P处的行走路线依次为(+2,+2),(+2,﹣1),(﹣2,+3),(﹣1,﹣2),请在图中标出P的位置;

(3)若这只甲虫的行走路线为A→B→C→D,请计算该甲虫走过的路程.

(4)若图中另有两个格点M、N,且M→A(3﹣a,b﹣4),M→N(5﹣a,b﹣2),则N→A应记为什么?

【答案】(1)+3;+4;+2;0;D (2)解:P点位置如图1所示;

(3)解:如图2,根据已知条件可知:

A→B表示为:(1,4),B→C记为(2,0)C→D记为(1,﹣2); 则该甲虫走过的路线长为:1+4+2+1+2=10

(4)解:由M→A(3﹣a,b﹣4),M→N(5﹣a,b﹣2), 所以,5﹣a﹣(3﹣a)=2,b﹣2﹣(b﹣4)=2, 所以,点A向右走2个格点,向上走2个格点到点N, 所以,N→A应记为(﹣2,﹣2)

【解析】【解答】解:(1)图中A→C(+3,+4),B→C(+2,0),C→D(+1,﹣2); 故答案为:(+3,+4),(+2,0),D;

【分析】(1)根据向上向右走均为正,向下向左走均为负确定数据即可; (2)根据所给的路线确定点的位置即可; (3)根据表示的路线确定长度相加可得结果;

(4)观察点的变化情况,根据(1)即可确定点走了格数,从而确定结论.

5.如图,已知数轴上点A表示的数为8,B是数轴上一点,且AB=14,动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒。

(1)写出数轴上点B表示的数 ________,点P表示的数________(用含t的代数式表示);

(2)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发,问点P运动多少秒时追上点Q?

(3)若M为AP的中点,N为PB的中点.点P在运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN的长; (4)若点D是数轴上一点,点D表示的数是x,请你探索式子|x+6|+|x-8|是否有最小值?如果有,直接写出最小值;如果没有,说明理由. 【答案】(1)-6;8-5t

(2)解:设点P运动x秒时,在点C处追上点Q(如图)

则AC=5x,BC=3x, ∵AC-BC=AB

∴5x-3x=14 解得:x=7,

∴点P运动7秒时,在点C处追上点Q

(3)解:没有变化.分两种情况: ①当点P在点A、B两点之间运动时:

MN=MP+NP= AP+ BP= (AP+BP)= AB=7 ②当点P运动到点B的左侧时:

MN=MP-NP= AP- BP= (AP-BP)= AB=7 综上所述,线段MN的长度不发生变化,其值为7

(4)解:式子|x+6|+|x-8|有最小值,最小值为14.

【解析】【解答】解:(1)点B表示的数是-6;点P表示的数是8-5t, 【分析】(1)点B表示的数是-6;点P表示的数是8-5t,

【分析】(1)根据点A的坐标和AB之间的距离即可得出B点的坐标和P点的坐标; (2)设点P运动x秒时,在点C处追上点Q,则AC=5x,BC=3x,根据距离的差为14列出方程即可求解;

(3)分类讨论:①当点P在点A、B两点之间运动时,根据MN=MP+NP进行计算即可;②当点P运动到点B的左侧时,根据MN=MP-NP计算即可;

(4)分三种情况去绝对值符号:x8时,原式=x+6+x-8=2x-214; -6x=x+6+8-x=14; x

-6时,原式=-x-6-x+8=-2x+2

14,综上所述得出最小值。

,乙溶液中的酒精浓度为

8时,原式

6.有两种溶液,甲溶液的酒精浓度为 的溶液的酒精浓度是盐浓度的3倍?

【答案】 解:假设把水都蒸发掉,则甲溶液盐占盐和酒精的:10%÷(15%+10%)=40%,乙溶液中盐占盐和酒精的:5%÷(45%+5%)=10%; 需要配的溶液盐占盐和酒精的:1÷(1+3)=25%; 则:(0.25-0.1):(0.4-0.25)=0.15:0.15=1:1,

1千克甲溶液中盐和酒精:1×(15%+10%)=0.25(千克),1千克乙溶液中盐和酒精:1×(5+45%)=0.5(千克)。

答:需要0.5千克乙溶液, 将它与甲溶液混和后所得的溶液的酒精浓度是盐浓度的3倍。

,盐浓度为

盐浓度为 .现在有甲溶液 千克,那么需要多少千克乙溶液,将它与甲溶液混和后所得

【解析】【分析】 可以这样来看,将溶液中的水剔出或者说蒸发掉,那么所得到的溶液就是盐溶在酒精中。(事实上这种情况不符合物理规律,但这只是假设)。这样就能分别求出甲、乙溶液中盐占盐和酒精的百分之几。根据配制成溶液中酒精是盐的3倍先计算出配制后盐占盐和酒精的百分之几。分别求出1千克甲、乙溶液中盐和酒精的质量,然后确定需要加入的乙溶液的重量即可。

7.一个卖牛奶的人告诉两个小学生:这儿的一个钢桶里盛着水,另一个钢桶里盛着牛奶,由于牛奶乳脂含量过高,必须用水稀释才能饮用.现在我把A桶里的液体倒入B桶,使其中液体的体积翻了一番,然后我又把B桶里的液体倒进 A桶,使A桶内的液体体积翻番.最后,我又将A桶中的液体倒进B桶中,使B桶中液体的体积翻番.此时我发现两个桶里盛有同量的液体,而在B桶中,水比牛奶多出1升.现在要问你们,开始时有多少水和牛奶,而在结束时,每个桶里又有多少水和牛奶?

【答案】 解:假设一开始 桶中有液体 升, 桶中有 升.第一次将 桶的液体倒入 桶后, 桶有液体 体 桶有液体 等,得

升, 桶剩

升;第二次将 桶的液体倒入 桶后, 桶有液

升;第三次将 桶的液体倒入 桶后,

升.由此时两桶的液体体积相 .

升, 桶剩

升, 桶剩 ,

现在还不知道 桶中装的是牛奶还是水,可以将稀释牛奶的过程列成下表:

初始状态 第一次 桶倒入 桶 第二次 桶倒入 桶 第三次 桶倒入 桶 桶 原 桶液体:原 桶液体 桶 原 桶液体:原 桶液体 ,而题目中说“水比

由上表看出,最后 桶中的液体,原 桶液体与原 桶液体的比是 牛奶多 升”,所以原 桶中是水,原 桶中是牛奶. 因为在

中,“

”相当于1升,所以2个单位相当于1升.由此得到,开始时, 桶

中有 升水, 桶中有 升牛奶;结束时, 桶中有3升水和1升牛奶, 桶中有 升水和 升牛奶.

【解析】【分析】共操作了3次,假设一开始A桶中有溶液x升,b桶中有y升。然后用含有字母的式子分别表示出每次操作后溶液的重量,根据第三次操作后两桶溶液质量相等列出等式,化简等式得到x与y的比是11:5。把稀释牛奶的过程用列表的方法列出来,然后确定前后两个桶中水和牛奶的升数即可。

8.甲、乙、丙三人做一件工作,原计划按甲、乙、丙的顺序每人一天轮流去做,恰好整数天做完,若按乙、丙、甲的顺序轮流去做,则比计划多用半天;若按丙、甲、乙的顺序轮流去做,则也比原计划多用半天.已知甲单独做完这件工作要 天,且三个人的工作效率各不相同,那么这项工作由甲、乙、丙三人一起做,要用多少天才能完成? 【答案】 解:==

=

(天)

答:要用天才能完成。

【解析】【分析】 首先应确定按每一种顺序去做的时候最后一天由谁来完成。如果按甲、乙、丙的顺序去做,最后一天由丙完成,那么按乙、丙、甲的顺序和丙、甲、乙的顺序去做时用的天数将都与按甲、乙、丙的顺序做用的天数相同,这与题意不符;如果按甲、乙、丙的顺序去做,最后一天由乙完成,那么按乙、丙、甲的顺序去做,最后由甲做了半天来完成,这样有

做,最后由乙做了半天来完成,这样有 么

, 可得

;而按丙、甲、乙的顺序去 , 可得

. 那

, 即甲、乙的工作效率相同,也与题意不合。所以按甲、乙、丙的顺序去

, 可

做,最后一天是由甲完成的。那么有 得

。这样就可以根据工作效率之间的关系分别求出乙和丙的工作效

率,用总工作量除以三队的工作效率和即可求出一起做完成的时间。

9.抄一份书稿,甲每天的工作效率等于乙、丙二人每天的工作效率的和;丙的工作效率相当甲、乙每天工作效率和的 .如果3人合抄只需8天就完成了,那么乙一人单独抄需要多少天才能完成? 【答案】 解:甲的工作效率:丙的工作效率:

乙的工作效率:

乙独做的时间:1÷=24(天)。 答:乙一人单独抄需要24天才能完成。

【解析】【分析】 已知甲、乙、丙合抄一天完成书稿的 , 又已知甲每天抄写量等于乙、丙两人每天抄写量之和,因此甲两天抄写书稿的 , 即甲每天抄写书稿的 ;由于丙抄写5天相当于甲乙合抄一天,从而丙6天抄写书稿的 , 即丙每天抄写书稿的 ,这样用三人的工作效率和减去甲、丙的工作效率即可求出乙的工作效率,进而求出乙单独完成需要的时间。

10.几个同学去割两块草地的草,甲地面积是乙地面积的4倍,开始他们一起在甲地割了半天,后来留下12人割甲地的草,其余人去割乙地的草,这样又割了半天,甲、乙两地的草同时割完了,问:共有多少名学生? 【答案】 解:每人每天割草:

(名)。

答:共有20名学生。

【解析】【分析】 有12人全天都在甲地割草,设有人上午在甲地,下午在乙地割草.由于这人在下午能割完乙地的草(甲地草的),所以这些人在上午也能割甲地的草,所以12人一天割了甲地的草,这样就可以求出每人每天割草量,用全部草量除以每人每天的割草量即可求出学生总数。

因篇幅问题不能全部显示,请点此查看更多更全内容