从金融大数据到大数据金融
作者:冯永昌
来源:《财经国家周刊》2014年第22期
伴随着阿里集团在美国上市,互联网金融的大戏进入高潮,大数据、云计算以及互联网金融等几年前对公众还很陌生的技术术语,迅速成为社会热点。这些底层技术以移动互联的用户体验呈现出来,不仅通过互联网产品改变了人们的衣食住行,更通过互联网金融产品开始冲击“智力博弈巅峰”的金融业。
不管你恐惧还是欣喜,大数据金融时代已经来临。
如何理解由技术创新逐渐引领的金融创新?何谓大数据金融?我们选取三个最有代表性的例子来解答。
何谓大数据?大数据没有严格定义,顾名思义就是“很多数据”。可以从三个层面来解析这个特别的称谓——
从生产来看,不需要特别的采集过程,因为监管要求、业务逻辑或者技术便利,具有“自生产”特征,比如搜索数据、交易数据等;从存储来看,相对于传统数据库的数据规模,量变引起质变,需要新的数据库技术来支持存储和访问;从使用来看,分析方法从基于概率论的抽样理论过渡到人工智能、统计学习等讲求高维、高效率分析技术。
从行业细分角度,大数据金融业主要有大数据银行金融和大数据证券金融,分别和银行业务、证券业务相关。当然,保险业天然就和大数据相关。
信用卡自動授信是典型的大数据银行金融。从银行角度是否应该对申请者授信、发授多少信用额度,是个重要问题。传统方式是人工审核申请资料,然后根据大致的档位发放额度或拒绝申请。但是当银行积累了足够多的用卡客户数据,可以把是否违约,违约概率,有效使用额度等指标作为被评价对象,然后调用与此相关的各种客户信息建立统计模型,自动计算授信结果。
机器人投资是大数据证券金融的代表形式,股票价格波动受各种因素影响,传统的投资方式一般人工收集信息,手动交易。机器人投资可以建立多因素模型,自动选择股票或寻找交易时机,在适当的风控模型下建立机器人投资云交易模式。
再如,连接银行和证券的大数据不良资产评估。2005年,某国有不良资产管理公司开始尝试在海量数据基础上进行不良资产评估。原本银行信贷资产的评估都是基于会计模型,但是
龙源期刊网 http://www.qikan.com.cn
不良资产基本没有会计特征,很难用传统方法评估。因此,收集已处置资产和待处置资产样本进行对比,建立数据挖掘模型,可以方便评估待处置资产的价格。
了解了大数据和大数据金融的几个应用实例,我们总结一下何谓大数据金融。
金融业积累的大数据就是金融大数据,根据银行金融和证券金融本身的不同,这些数据也分成银行金融大数据和证券金融大数据。积累数据过程中,产生了数据采集、存储、使用的相关工作和企业,这样就完成了金融大数据的产业链,但总体依然是信息技术产业链。 随着信息技术全面发展,金融大数据产业具备提供信息技术服务之外的金融服务能力时,就产生了大数据金融。大数据金融是脱颖于金融大数据的新服务,是技术服务催生出来的金融服务。
因篇幅问题不能全部显示,请点此查看更多更全内容