1.下列说法正确的是( ) A.棱柱的底面一定是平行四边形 B.棱锥的底面一定是三角形
C.棱锥被平面分成的两部分不可能都是棱锥 D.棱柱被平面分成的两部分可能都是棱柱
解析:选D.棱柱和棱锥的底面可以是任意多边形,故选项A、B均不正确;可沿棱锥的侧棱将其分割成两个棱锥,故C错误;用平行于棱柱底面的平面可将棱柱分割成两个棱柱.
2.具备下列条件的多面体是棱台的是( ) A.两底面是相似多边形的多面体 B.侧面是梯形的多面体 C.两底面平行的多面体
D.两底面平行,侧棱延长后交于一点的多面体
解析:选D.由棱台的定义可知,棱台的两底面平行,侧棱延长后交于一点. 3.如图,能推断这个几何体可能是三棱台的是( )
A.A1B1=2,AB=3,B1C1=3,BC=4
B.A1B1=1,AB=2,B1C1=1.5,BC=3,A1C1=2,AC=3 C.A1B1=1,AB=2,B1C1=1.5,BC=3,A1C1=2,AC=4 D.AB=A1B1,BC=B1C1,CA=C1A1
解析:选C.根据棱台是由棱锥截成的进行判断.
A1B1B1C1B1C1A1C1A1B1
选项A中≠,故A不正确;选项B中≠,故B不正确;选项C中
ABBCBCACABB1C1A1C1
==,故C正确;选项D中满足这个条件的可能是一个三棱柱,不是三棱台.故BCAC选C.
4.一个棱锥的各棱长都相等,那么这个棱锥一定不是( )
A.三棱锥 C.五棱锥
B.四棱锥 D.六棱锥
解析:选D.由题意可知,每个侧面均为等边三角形,每个侧面的顶角均为60°,如果是六棱锥,因为6×60°=360°,所以顶点会在底面上,因此不是六棱锥.
5.下列图形中,不能折成三棱柱的是( )
解析:选C.C中,两个底面均在上面,因此不能折成三棱柱,其余均能折成三棱柱. 6.四棱柱有________条侧棱,________个顶点.
解析:四棱柱有4条侧棱,8个顶点(可以结合正方体观察求得). 答案:4 8
7.一个棱台至少有________个面,面数最少的棱台有________个顶点,有________条棱.
解析:面数最少的棱台是三棱台,共有5个面,6个顶点,9条棱. 答案:5 6 9
8.在下面的四个平面图形中,是侧棱都相等的四面体的展开图的为__________.(填序号)
解析:由于③④中的图组不成四面体,只有①②可以. 答案:①②
9.根据下列关于空间几何体的描述,说出几何体的名称: (1)由6个平行四边形围成的几何体;
(2)由7个面围成的几何体,其中一个面是六边形,其余6个面都是有一个公共顶点的三角形;
(3)由5个面围成的几何体,其中上、下两个面是相似三角形,其余3个面都是梯形,并且这些梯形的腰延长后能相交于一点.
解:(1)这是一个上、下底面是平行四边形,4个侧面也是平行四边形的四棱柱. (2)这是一个六棱锥. (3)这是一个三棱台.
10.画出如图所示的几何体的表面展开图.
解:表面展开图如图所示:(答案不唯一)
[B 能力提升]
11.五棱柱中,不同在任何侧面且不同在任何底面的两顶点的连线称为它的对角线,那么一个五棱柱共有对角线( )
A.20条 C.12条
解析:选D.如图,在五棱柱ABCDE
B.15条 D.10条
A1B1C1D1E1中,从顶点A出发
的对角线有两条:AC1,AD1,同理从B,C,D,E点出发的对角线均有两条,共有2×5=10(条).
12.一个三棱锥,如果它的底面是直角三角形,那么它的三个侧面( ) A.至多有一个是直角三角形 B.至多有两个是直角三角形 C.可能都是直角三角形 D.必然都是非直角三角形
解析:选C.注意到答案特征是研究侧面最多有几个直角三角形,这是一道开放性试题,需要研究在什么情况下侧面的直角三角形最多.在如图所示的长方体中,三棱锥AA1C1D1的三个侧面都是直角三角形.
13.长方体ABCD-A1B1C1D1的长、宽、高分别为3,2,1,从A到C1沿长方体的表面的最短距离为________.
解析:结合长方体的三种展开图不难求得AC1的长分别是:32,25,26,显然最小值是32.
答案:32
14.如图,已知长方体ABCD-A1B1C1D1.
(1)这个长方体是棱柱吗?如果是,是几棱柱?为什么?
(2)用平面BCEF把这个长方体分成两部分,各部分几何体的形状是什么?
解:(1)是棱柱.是四棱柱.因为长方体中相对的两个面是平行的,其余的每个面都是矩形(四边形),且每相邻的两个矩形的公共边都平行,符合棱柱的结构特征,所以是棱柱.
(2)各部分几何体都是棱柱,分别为棱柱BB1FCC1E和棱柱ABFA1DCED1.
[C 拓展探究]
15.如图,在一个长方体的容器中装有少量水,现在将容器绕着其底部的一条棱倾斜,在倾斜的过程中:
(1)水面的形状不断变化,可能是矩形,也可能变成不是矩形的平行四边形,对吗?
(2)水的形状也不断变化,可以是棱柱,也可能变为棱台或棱锥,对吗?
(3)如果倾斜时,不是绕着底部的一条棱,而是绕着其底部的一个顶点,试着讨论水面和水的形状.
解:(1)不对,水面的形状就是用一个与棱(倾斜时固定不动的棱)平行的平面截长方体时截面的形状,因而是矩形,不可能是其他非矩形的平行四边形.
(2)不对,水的形状就是用与棱(将长方体倾斜时固定不动的棱)平行的平面将长方体截去一部分后,剩余部分的几何体是棱柱,水比较少时,是三棱柱,水多时,可能是四棱柱;但不可能是棱台或棱锥.
(3)用任意一个平面去截长方体,其截面形状可以是三角形,四边形,五边形,六边形,因而水面的形状可以是三角形,四边形,五边形,六边形;水的形状可以是棱锥,棱柱,但
不可能是棱台.
因篇幅问题不能全部显示,请点此查看更多更全内容