相对论简介
教学目的:
1. 2. 3.
了解相对论的诞生及发展历程 了解时间和空间的相对性
了解狭义相对论和广义相对论的内容
教学重点:时间和空间的相对性、狭义相对论和广义相对论
教学难点:时间和空间的相对性 教学过程:
一、
狭义相对论的基本假设
牛顿力学是在研究宏观物体的低速(与光速相比)
运动时总结出来的.对于微观粒子,牛顿力学并不适用,在这一章中我们还将看到,对于高速运动,即使是宏观物体,牛顿力学也不适用.
19世纪后半叶,关于电磁场的研究不断深入,人们认识到了光的电磁本质.我们已经知道,电磁波是以巨大的速度传播的,因此在电磁场的研究中不断遇到一些矛盾,这些矛盾导致了相对论的出现.
相对论不仅给出了物体在高速运动时所遵循的规律,而且改变了我们对于时间和空间的认识,它的建立在物理学和哲学的发展史上树立了一座重要的里程碑.
经典的相对性原理
如果牛顿运动定律在某个参考系中成立,这个参考系叫做惯性系,相对一个惯性系做匀速直线运动的另一个参考系也是惯性系.
我们引用伽利略的一段话,生动地描述了一艘平稳行驶的大船里发生的事情.“船停着不动时,你留神观察,小虫都以等速向各方向飞行,鱼向各个方向随意游动,水滴滴进下面的罐中;你把任何东西扔给你的朋友时,只要距离相等,向这一方向不比向另一方向用更多的力.你双脚齐跳,无论向哪个方向跳过的距离都相同.当你仔细观察这些事情之后,再使船以任何速度前进,只要运动是匀速的,也不忽左忽右地摆动,你将发现,所有上述现象丝毫没有变化.你也无法从其中任何一个现象来确定,船是在运动还是停着不动”通过这段描述以及日常经验,人们很容易相信这样一个论述:力学规律在任何惯性系中都是相同的.这个论述叫做伽利略相
对性原理.相对性原理可以有不同的表述.例如还可以表述为:在一个惯性参考系内进行任何力学实验都不能判断它是否在相对于另一个惯性参考系做匀速直线运动;或者说,任何惯性系都是平权的.
在不同的参考系中观察,物体的运动情况可能不同,例如在一个参考系中物体是静止的,在另一个参考系中看,它可能是运动的,在不同的参考系中它们运动的速度和方向也可能不同.但是,它们在不同的惯性系中遵从的力学规律是一样的,例如遵从同样的牛顿运动定律、同样的运动合成法则……
光速引起的困难
自从麦克斯韦预言了光的电磁本质以及电磁波的速度以后,物理学家们就在思考,这个速度是对哪一个参考系说的?如果存在一个特殊的参考系O,光对这个参考系的速度是c,另一个参考系O′以速度v沿光传播的方向相对参考系O运动,那么在O′中观测到的光速就应该是c-v,如果参考系O′逆着光的传播方向运动,在参考系O′中观测到的光速就应该是c+v.
由于一般物体的运动速度比光速小得多,c+v和c-v与光速c的差别很小,在19世纪的技术条件下很难直接测量,于是物理学家们设计了许多巧妙的实验,力图测出不同参考系中光速的差别.最著名的一个实验是美籍物理学家麦克尔逊设计的.他把一束光分成互相垂直的两束,一束的传播方向和地球运动的方向一致,另一束和地球运动的方向垂直,然后使它们发生干涉,如果不同方向上的光速有微小的差别,当两束光互相置换时干涉条纹就会发生变化.由于地球在宇宙中运动的速度很大,希望它对光速能有较大的影响.但是,这个实验和其他实验都表明,不论光源和观察者做怎样的相对运动,光速都是相同的.这些否定的结果使当时的物理学家感到震惊,因为它和传统的观念,例如速度合成的法则,是矛盾的.
狭义相对论的两个假设
上面的矛盾使我们面临一个困难的选择:要么放弃麦克斯韦的电磁理论,要么否定特殊参考系的存在.爱因斯坦选择了后者.他认为,既然在不同的惯性系中力学规律都一样,我们会很自然地想到,电磁规律在不同的惯性系中也是一样的,也就是说,并不存在某一个特殊参考系(例如地球参考系、太阳参考系,或者所谓的以太……)爱因斯坦把伽利略的相对性原理推广到电磁规律和一切其他物理规律,成为他的第一个假设:
在不同的惯性参考系中,一切物理规律都是相同的.这个假设通常称为爱因斯坦相对性原理. 另一条假设是:
真空中的光速在不同的惯性参考系中都是相同的,与光源的运动和观察者的运动没有关系.这个假设通常叫做光速不变原理.
这两个假设似乎是麦克尔逊实验的直接结论,为什么还要叫做假设?这是因为,虽然实验表明了假设所说的内容,但这终归是有限的几次实验.只有在从这两个假设出发,经过逻辑推理(包括数学推导)所得出的大量结论都与事实相符时,它们才能成为真正意义上的原理.
同时的相对性
作为相对论的两个假设的直接推论,现在讨论“同时”的相对性,以体会相对论描述的世界和我们日常的经验有多大的差别.
我们研究两个“事件”的同时性.在这里,“事件”可以指一个光子与观测仪器的碰撞,也可以指闪电对地面的打击,还可以指一个婴儿的诞生……
假设一列很长的火车在沿平直轨道飞快地匀速行驶.车厢中央有一个光源发出了一个闪光,闪光照到了车厢的前壁和后壁,这是两个事件.车上的观察者认为两个事件是同时的.在他看来这很好解释,因为车厢是个惯性系,光向前、后传播的速度相同,光源又在车厢的中央,闪光当然会同时到达前后两壁(图甲).
车下的观察者则不以为然.他观测到,闪光先到达后壁,后到达前壁.他的解释是:地面也是一个惯性系,闪光向前、后传播的速度对地面也是相同的,但是在闪光飞向两壁的过程中,车厢向前行进了一段距离,所以向前的光传播的路程长些,到达前壁的时刻也就晚些(图乙),这两个事件不同时.
在经典物理学家的头脑中,如果两个事件在一个参考系中看来是同时的,在另一个参考系中看来一定也是同时的,这一点似乎天经地义,无需讨论.但是,如果接受了爱因斯坦的两个假设,我们自然会得出“同时是相对的”这样一个结论.为什么在日常生活中没有人觉察到这种相对性?原来,火车运动的速度远远小于光速,光
从车厢中央传播到前后两壁的短暂时间内,火车前进不了多大距离,因此地面观察者不会发现闪光到达前壁、后壁的时间差.
时间和空间的相对性 时间间隔的相对性
经典物理学认为,某两个事件,在不同的惯性系中观察,它们发生的时间差,也就是它们的时间间隔,总是相同的.但是,从狭义相对论的两个基本假设出发,我们会看到,时间间隔是相对的.
还以高速火车为例,假设车厢地板上有一个光源,发出一个闪光.对于车上的人来说,闪光到达光源正上方h高处的小镜后被反射,回到光源的位置(如图甲),往返所用的时间为△t′.
对于地面的观察者来说,情况有所不同.从地面上看,在光的传播过程中,火车向前运动了一段距离,因此被小镜反射后又被光源接收的闪光是沿路径AMB传
播的光(图乙).如果火车的速度为v,地面观察者测得的闪光从出发到返回光源所用时间记为△t,那么应用勾股定理可得
这又是一个令人吃惊的结论:关于闪光从光源出发, 经小镜反射后又回到光源所经历的时间,地面上的人和车上的人测量的结果不一样,地面上的人认为这个时间长些.
更严格的推导表明,(1)式具有普遍意义,它意味着,从地面上观察,火车上的时间进程变慢了,由于火车在运动,车上的一切物理、化学过程和生命过程都变慢了:时钟走得慢了,化学反应慢了,甚至人的新陈代谢也变慢了……可是车上的人自己没有这种感觉,他们反而认为地面上的时间进程比火车上的慢,因为他们看到,地面正以同样的速度朝相反的方向运动!
(1)
式又一次生动地展示了时间的相对性.
长度的相对性
在这一小节中我们将要说明,高速火车上的一个杆,当它的方向和运动方向平行时,地面上的人测得的杆长要小于火车上的人测得的杆长!
假设一个杆沿着车厢运动的方向固定在火车上,和车一起运动.在火车上的人看来,杆是静止的.他利用固定在火车上的坐标轴,测出杆两端的位置坐标,坐标之差就是他测出的杆长L′.地面上的人要利用固定在地面上的坐标轴,测出杆两端的位置坐标,坐标之差就是他测出的杆长L.可是,对于地面上的人,杆是运动的,要使这种测量有意义,他必须同时测出杆两端的位置坐标;如果在某一时刻测出杆一端的位置坐标,在另一时刻测出另一端的位置坐标,坐标之差就不能代表杆长了.
火车上的人和地面上的人各自用上述方法测量随车运动的杆长,结果发现,L′>L.他们两人的测量都是符合测量要求的,但测量结果不同,这跟同时的相对性有关.地面上的人认s为同时的两个事件(同时对A、B两端读数),火车上的人认为不是同时的.火车上的人
认为,地面上的人对B端的读数早些,对A端的读数迟些,在这个时间内杆向前运动了一段距离,因而地面上的人测得的杆长比较短.
(2)式具有普遍意义,也就是说,一个杆,当它沿着自身的方向相对于测量者运动时,测得的长度比它静止时的长度小,速度越大,差别也越大.这就是我们所说的空间的相对性.当杆沿着垂直于自身的方向运动时,测得的长度和静止时一样.
可以想像这样一幅图景:一列火车以接近光的速度从我们身边飞驶而过,我们感到车厢变短了,车窗变窄了……火车越快,这个现象越明显,但是车厢和车窗的高度都没有变化.车上的人有什么感觉呢?他认为车上的一切都和往常一样,因为他和火车是相对静止的.但是,他却认为地面上的景象有些异常:沿线的电线杆的距离变短了,面对铁路线的正方形布告牌由于宽度变小而高度未变竟成了窄而高的矩形……
时空相对性的实验验证
从(l)、(2)两式可以看到,只有当两个参考系的相对速度可与光速相比时,时间与空间的相对性才比较明显.目前的技术还不能使宏观物体达到这样的速度,但是随着对微观粒子研究的不断深入,人们发现,许多情况下粒子的速度会达到光速的90%以上,时空的相对性应该是不可忽略的.事实正是如此.时至今日,不但狭义相对论的所有结论已经完全得到证实,实际上它已经成为微观粒子研究的基础之一.
时空相对性的最早证据跟宇宙线的观测有关(1941年).宇宙线是来自太阳和宇宙深处的高能粒子流,它和高层大气作用,又产生多种粒子,叫做次级宇宙线,它们统称宇宙线.次级宇宙线中有一种粒子叫做μ子,寿命不长,只有3.0μs,超过这个时间后大多数μ子就衰变为别的粒子了.宇宙线中μ子的速度约为0.99c,所以在它的寿命之内,运动的距离只有约890m.μ子生成的高度在100km以上,这样说来宇宙线中的μ子不可能到达地面.但在实际上,地面观测到的宇宙线中有许多μ子,这只能用相对论来解释.
我们说μ子的寿命为3.0μs,这是在与它相对静止的参考系中说的.从地面参考系看,μ子在以接近光速的速度运动,根据(l)式,它的寿命比3.0μs长得多,在这样长的时间内,许多μ子可以飞到地面.
如果观察者和μ子一起运动,这个现象也好解释.这位观察者看到,μ子的寿命仍是3.0μs,但是大地正向他扑面而来,因此大气层的厚度不是100km,由于长度的相对性,在他看来大气层比100km薄得多,许多μ子在衰变为其他粒子之前可以飞过这样的距离.
相对论的第一次宏观验证是在1971年进行的.当时把铯原子钟放在喷气式飞机上作环球飞行,然后与地面上的基准钟对照.实验结果与理论预言符合得很好. 相对论的时空观
什么是时间?什么是空间?时间和空间有什么性质?经典物理学对这些问题并没有正面回答.但是从它对问题的处理上,我们体会到,经典物理学认为空间好像一个大盒子(一个没有边界的盒子),它是物质运动
的场所.至于某一时刻在某一空间区域是否有物质存在,物质在做什么样的运动,这些对于空间本身没有影响,就像盒子里是否装了东西对于盒子的性质没有影响一样.时间与此相似,它在一分一秒地流逝,与物质的运动无关.换句话说,经典物理学认为空间和时间是脱离物质而存在的,是绝对的,空间与时间之间也是没有联系的.
相对论则认为有物质才有空间和时间,空间和时间与物质的运动状态有关.前面已经看到,在一个确定的参考系中观察,运动物体的长度(空间距离)和它上面物理过程的快慢(时间进程)都跟物体的运动状态有关.
我们生活在低速运动的世界里,因此自然而然地接受了经典的时空观,过去谁都未曾有意识地考虑过空间与时间的性质.只有当新的实验事实引出的结论与传统观念不一致时,人们才回过头来认真思考过去对于空间和时间的认识.科学的发展和人对于自然界的认识就是这样一步一步地前进的.新科学没有全盘否定经典物理学,经典物理学建立在实验的基础上,它的结论又受到
无数次实践的检验.虽然相对论更具有普遍性,但是经典物理学作为它在低速运动时的特例,在自己的适用范围内还将继续发挥作用. 狭义相对论的其他三个结论
我们不做推导而直接引入狭义相对论的三个重要结论. 相对论速度叠加公式
仍以高速火车为例.设车对地面的速度为v,车上的人以速度u′沿着火车前进的方向相对火车运动,那么他相对地面的速度u为
如果车上人的运动方向与火车的运动方向相反,则u′取负值.这两个速度的方向垂直或成其他角度时,(1)式不适用,这种情况不做讨论.
按照经典的时空观,u=u′+v.而从(1)式来看,实际上人对地面的速度u比u′与v之和要小,不过只有在u′和v的大小可以与c相比时才会观察到这个差别.
从(1)式还可以看出,如果u′和v都很大,例如十分接近光速,它们的合速度也不会超过光速,也就是说,光速是速度的极限.此外,当u′=c时,不论v取什么值,总有u=c,这表明,从不同参考系中观察,光速都是相同的,这和相对论的第二个假设一致. 相对论质量
按照牛顿力学,物体的质量是不变的,因此一定的力作用在物体上,产生的加速度也是一定的,这样,经过足够长的时间以后物体就可以达到任意大的速度.但是相对论的速度叠加公式告诉我们,物体的运动速度不能无限增加.这个矛盾启发我们思考:物体的质量是否随物体的速度而增大?严格的论证证实了这一点.实际上,物体以速度v运动时的质量m和它静止时的质量m0之间有如下关系:
微观粒子的运动速度很高,它的质量明显地大于静止质量,这个现象必须考虑.例如,回旋加速器中被加速的粒子,在速度增大后质量增大,因此做圆周运动
的周期变大,它的运动与加在D形盒上的交变电压不再同步,所以回旋加速器中粒子的能量受到了限制. 质能方程
相对论另一个重要结论就是大家已经学过的爱因斯坦质能方程:E = mc2 (3)
它表达了物体的质量和它所具有的能量的关系.物体运动时的能量E和静时有以下近似关系
于是知道:
这就是过去熟悉的动能表达式.这个结果又一次让我们看到,牛顿力学是相对论力学在v< 因篇幅问题不能全部显示,请点此查看更多更全内容