*CN101868185A*
(10)申请公布号 CN 101868185 A(43)申请公布日 2010.10.20
(12)发明专利申请
(21)申请号 200880117482.1(22)申请日 2008.12.03(30)优先权数据
60/992,020 2007.12.03 US61/024,843 2008.01.30 US(85)PCT申请进入国家阶段日 2010.05.19
(86)PCT申请的申请数据
PCT/US2008/085447 2008.12.03(87)PCT申请的公布数据
WO2009/073753 EN 2009.06.11(71)申请人科隆科技公司
地址美国加利福尼亚州(72)发明人黄勇力
(74)专利代理机构上海专利商标事务所有限公
司 31100
代理人毛力(51)Int.Cl.
A61B 8/12(2006.01)
权利要求书 2 页 说明书 11 页 附图 11 页
(54)发明名称
用于超声系统的CMUT封装(57)摘要
超声扫描仪和制造超声扫描仪的方法。方法的一个实施方式包括使柔性电子器件(例如,IC)和柔性超声换能器(例如,圆形CMUT阵列的一部分)与柔性构件集成。IC、换能器和柔性构件可形成柔性子组件,柔性子组件被卷起以形成超声扫描仪。IC和换能器的集成可同时发生。在可选方案中,电子器件的集成可出现在换能器的集成之前。而且,换能器的集成可包括使用半导体技术。此外,卷起的子组件可形成管腔或可连接到管腔。该方法可包括折叠柔性子组件的一部分以形成前视换能器。一些子组件的柔性构件可包括一对臂。
CN 101868185 ACN 101868185 A
权 利 要 求 书
1/2页
1.一种封装超声系统的方法,包括:集成超声换能器与柔性构件;使电路与所述柔性构件集成,集成电路、所述超声换能器和所述柔性构件是柔性子组件;以及
使所述柔性子组件成形为有至少一个弯曲的部分并且成为所述超声系统。2.如权利要求1所述的方法,其中所述超声换能器是柔性的。3.如权利要求1所述的方法,其中所述电子器件是柔性的。4.如权利要求1所述的方法,还包括在将电子器件和所述超声换能器与所述柔性构件集成之前将所述电子器件和所述超声换能器集成在基底的器件层上。
5.如权利要求4所述的方法,还包括形成通过基底的器件层的至少一个沟槽。6.如权利要求5所述的方法,还包括形成具有至少一个嵌入式腔的所述器件层。7.如权利要求5所述的方法,还包括在SOI晶片上形成所述器件层。8.如权利要求1所述的方法,还包括使电子器件和所述超声换能器同时与所述柔性构件集成。
9.如权利要求1所述的方法,其中集成所述超声换能器包括使用半导体技术。10.如权利要求1所述的方法,其中所成形的柔性构件界定管腔或部分管腔。11.如权利要求1所述的方法,还包括在所述超声换能器中形成贯穿晶片互连,且其中从不包括所述柔性超声换能器的作用表面的所述超声换能器的侧面对所述柔性换能器进行集成。
12.如权利要求1所述的方法,还包括将所成形的柔性构件连接到管腔。13.如权利要求1所述的方法,其中所述柔性超声换能器包括至少一个电容式微机械超声换能器(CMUT)。
14.如权利要求1所述的方法,还包括折叠所述柔性构件中托住所述柔性超声换能器的部分,其中所述柔性构件的所折叠的部分和所述柔性超声换能器形成前视超声换能器。
15.如权利要求1所述的方法,其中所述柔性超声换能器包括圆形CMUT阵列的至少一部分。
16.如权利要求1所述的方法,其中所述柔性构件包括一对臂。17.如权利要求1所述的方法,其中从所述柔性构件的相对侧面集成所述超声换能器和集成所述电路。
18.一种超声系统,包括:电路;
超声换能器;以及柔性构件,所述电路和所述超声换能器与所述柔性构件集成,集成电路、所述超声换能器和所述柔性构件是柔性子组件,所述柔性子组件被成形为有至少一个弯曲的部分并且成为所述超声系统。
19.如权利要求18所述的系统,其中所述超声换能器是柔性超声换能器。20.如权利要求18所述的系统,其中所成形的柔性子组件是管腔。21.如权利要求18所述的系统,其中所述柔性超声换能器包括贯穿晶片互连。22.如权利要求18所述的系统,其中所述超声换能器包括至少一个CMUT元件。
2
CN 101868185 A
权 利 要 求 书
2/2页
23.如权利要求18所述的系统,其中所述超声换能器是包括至少两个CMUT元件的CMUT阵列。
24.如权利要求18所述的系统,还包括与所述柔性构件集成的温度传感器或压力传感器之一。
25.如权利要求18所述的系统,其中所述超声换能器包括圆形CMUT阵列的至少一部分。
26.如权利要求18所述的系统,其中所述超声换能器是前视超声换能器。27.如权利要求18所述的系统,其中所述超声换能器和所述电路在所述柔性构件的相对侧上。
28.一种超声系统,包括:集成电路;
电容式微机械超声换能器(CMUT);柔性构件,所述集成电路和所述CMUT与所述柔性构件集成,所述集成电路、所述CMUT和所述柔性构件是柔性子组件,所述柔性子组件被成形为有至少一个弯曲的部分并且是管腔的至少一部分,所述CMUT位于超声扫描仪的远端上并且是前视环状超声换能器。
29.一种制造超声换能器的方法,所述方法包括:
使多个超声换能器和多个电路与其中构造有互连的柔性基底集成,以形成柔性子组件;以及
使所述柔性子组件成形为紧凑的形状,所成形的柔性子组件是超声换能器。30.如权利要求29所述的方法,其中将所述多个超声换能器与所述柔性基底集成包括:
形成包括所述互连的所述柔性基底;在所述柔性基底上形成多个结合区,所述结合区传导地连接到所述互连;以及将所述多个超声换能器中的每个连接到所述多个结合区中的相应一个。31.如权利要求29所述的方法,其中将所述多个超声换能器与所述柔性基底集成包括:
设置支撑基底;
将所述多个超声换能器放置在所述支撑基底上;以及
在所述多个超声换能器之上形成具有所述互连的所述柔性基底。32.如权利要求31所述的方法,还包括:移除所述支撑基底的至少一部分。33.如权利要求29所述的方法,其中所述柔性子组件的成形包括卷起所述柔性子组件。
3
CN 101868185 A
说 明 书
用于超声系统的CMUT封装
1/11页
优先权
[0002] 本申请要求2007年12月3日提交的美国临时申请序列号60/992,020以及2008年1月30日提交的美国临时申请序列号61/024,843的优先权。[0003] 背景
[0004] 本申请涉及电容式微机械超声换能器(CMUT),尤其是涉及基于CMUT的超声换能器、器件和系统的封装。
[0005] 导管允许外科手术人员通过将导管的远端通到可能存在某种疾病的部位来诊断并治疗患者体内深处的疾病。接着,外科手术人员可在该部位操作各种传感器、仪器等来对患者执行具有最小侵入影响的某些过程。得到广泛使用的一种器件是超声扫描仪。超声扫描仪在针对其能力选择的频率处产生声波,以允许该声波穿透各种组织和其它生物结构并从其返回回波。选择大约20MHz或更高的频率常常是希望的。可从这些返回的回波得到在超声扫描仪周围的组织的图像。另一种超声器件用于通过配备有超声换能器的导管执行高强度聚焦超声(HIFU);它可安全和有效地消除来自跳动的心脏的外表面的心房颤动(AF)。存在两种超声换能器,即,基于压电晶体(即,由压电材料或压电复合材料制造的晶体)的超声换能器和基于电容式微机械超声换能器(CMUT和嵌入式弹簧CMUT或ESCMUT)的超声换能器。
[0006] CMUT一般包括两个间隔开的电极,膜附到这两个电极中的一个。在操作中,交流电(AC)信号用于将电极充电到不同的电压。差分电压引起附到膜的电极移动,因而导致膜本身的移动。压电换能器(PZT)还将AC信号应用于其中的晶体,使它振动并产生声波。返回到晶体的回波用于得到周围组织的图像。[0007] 因此,外科手术人员发现使用配备有超声扫描仪的导管来获得人类(和动物)患者体内的某些组织(例如,血管)、结构等的图像并观察对其的治疗效果是有用的。例如,超声换能器可提供允许医疗人员确定血液是否流经特定的血管的图像。[0008] 某些导管包括位于导管的远端处或附近的单个超声换能器,而其它导管包括在导管的远端处的超声换能器的阵列。这些超声换能器可沿着导管的侧面布置并可从其指向外。如果是这样,它们可被称为“侧视”换能器。当导管只有一个侧视换能器时,可旋转导管,以获得在导管周围的所有方向上的组织的图像。否则,导管可具有指向导管周围的所有方向的超声换能器。
[0009] 在其它情况下,导管可具有布置在导管的远端处的超声换能器,这些换能器从导管的端部指向远侧方向。这些类型的超声换能器可称为“前视”换能器。前视换能器对获得在导管前面(即,前方)的组织的图像可能是有用的。[0010] 因为在超声成像和超声治疗中,超声系统将超声聚焦在目标区中以获得成像或治疗,用于成像的基于导管的超声系统也可配置成通过选择适当的超声频率和能量输入来执行治疗。
[0011] 概述
[0012] 实施方式提供了超声换能器、器件和系统(例如,扫描仪或HIFU器件)以及制造
[0001]
4
CN 101868185 A
说 明 书
2/11页
超声系统的方法。更具体地,根据一个实施方式实践的方法包括集成柔性电子器件(例如,集成电路)与柔性构件以及集成柔性超声换能器(例如,圆形CMUT阵列的一部分)与柔性构件。集成的柔性电子器件、柔性超声换能器和柔性构件可形成柔性子组件,柔性子组件被卷起以形成超声换能器。这里公开的封装方法可用于制造小型化的超声换能器、器件和系统。这些方法还可用于制造柔性超声换能器、器件和系统。而且,所产生的超声换能器、器件和系统可在机械上是柔性的。在一些实施方式中,这些超声换能器、器件和系统也可在操作上是灵活的,因为它们可应用于各种情况,包括:IVUS/ICE成像和各种形式的治疗。例如,这些超声换能器、器件和系统可用于但不限于对病人的心脏的AF的高强度聚焦超声(HIFU)消融。
[0013] 在一些实施方式中,柔性电子器件和柔性超声换能器与柔性构件的集成同时出现。此外,可从包括其作用表面的超声换能器的侧面执行对超声换能器的集成。在可选方案中,柔性电子器件的集成可出现在柔性超声换能器的集成之前(或之后)。而且,柔性超声换能器的集成可包括使用半导体技术。在一些实施方式中,卷起的柔性子组件形成管腔,其可耦合到导管的管腔。然而,卷起的柔性子组件可替代地连接到导管的管腔。在一些实施方式中,该方法包括将柔性构件(其托住柔性超声换能器)的一部分折叠大约90度的角度以形成前视超声换能器。一些实施方式的柔性构件可包括连接到CMUT换能器的圆形阵列的部分的一对臂。当该臂(和柔性构件的其余部分)卷起时,圆形CMUT阵列可折叠大约90度以形成环状CMUT阵列。环状CMUT阵列可接着用作前视CMUT阵列。[0014] 这里公开的超声系统的一个实施方式包括柔性电子器件(例如,集成电路)、柔性超声换能器和柔性构件,柔性电子器件和柔性超声换能器与柔性构件集成在一起。集成的柔性电子器件、柔性超声换能器和柔性构件可形成柔性子组件,柔性子组件卷起以形成超声扫描仪。在一些实施方式中,卷起的柔性子组件是管腔,或替代地可连接到导管的管腔。柔性超声换能器可包括贯穿晶片互连和与其相通的圆形CMUT阵列的一部分。而且,超声换能器可为前视、环状CMUT阵列。[0015] 因此,实施方式提供了优于以前可用的超声换能器,更具体地,优于基于PZT的超声系统的很多优点。例如,实施方式提供了可在较高的频率操作的并具有比此前可能的宽的带宽的超声扫描仪。实施方式还提供具有比以前可用的超声换能器的形状因子小的形状因子的超声系统。此外,实施方式提供制造超声扫描仪的方法,其比以前可用的超声制造方法更简单、成本更小和更快。附图的简要说明
[0017] 图1对一个实施方式的基于CMUT的超声扫描仪示出基于CMUT的超声扫描仪和柔性子组件的透视图。
[0018] 图2对一个实施方式的基于CMUT的超声扫描仪示出另一基于CMUT的超声扫描仪和柔性子组件的透视图。
[0019] 图3对一个实施方式的基于CMUT的超声扫描仪示出柔性子组件的透视图。
[0020] 图4对一个实施方式的基于CMUT的超声扫描仪示出将IC和CMUT阵列与柔性构件集成的方法。
[0021] 图5对一个实施方式的基于CMUT的超声系统示出将IC和CMUT阵列与柔性构件集成的另一方法。
[0016]
5
CN 101868185 A[0022]
说 明 书
3/11页
图6对一个实施方式的基于CMUT的超声系统示出将IC和CMUT阵列与柔性构件
集成的另一方法。
[0023] 图7对一个实施方式的基于CMUT的超声扫描仪示出将IC和CMUT阵列与柔性构件集成的另一方法。
[0024] 图8对一个实施方式的基于CMUT的超声扫描仪示出将IC和CMUT阵列与柔性构件集成的又一方法。
[0025] 图9对一个实施方式的基于CMUT的超声扫描仪示出柔性子组件的透视图。
[0026] 图10对一个实施方式的基于CMUT的超声扫描仪示出制造柔性IC子组件的方法。[0027] 图11对一个实施方式的基于CMUT的超声扫描仪示出制造CMUT阵列和CMUT元件的另一方法。
[0028] 图12示出制造CMUT阵列的各种实施方式的方法。[0029] 详细描述
[0030] 不同实施方式的基于电容式微机械超声换能器(CMUT)的系统(例如,IVUS/ICE扫描仪、小型高强度聚焦超声(HIFU)器件等)的一个部件是具有集成在其上的CMUT阵列和/或IC的柔性构件。CMUT阵列和IC的集成可使用半导体以及MEMA制造和封装技术(在下文中的“半导体”技术)被同时执行,或可在不同的时间被执行。半导体技术可用在批量处理中,从而提供制造基于CMUT的超声系统的相对简单、可靠和有成本效率的方法。集成的柔性构件(具有CMUT阵列和/或IC)可被折叠或以另外方式布置,以安装在有限的空间内,并可被制成符合各种表面(甚至具有空间曲率的那些表面)。更具体地,这里公开的超声系统可包括在各种类型的导管上或中。更具体地,这些半导体批量处理可提供制造超声系统的方法,其比制造基于压电换能器(PZT)的超声系统的方法更简单、更可靠和更有成本效率。
[0031] 虽然压电换能器(PZT)可执行一些期望的诊断和治疗功能,但获得具有小形状因子的压电换能器(PZT)仍然很难。更具体地,由于与制造PZT的材料相关的限制,设计和制造具有PZT的导管且PZT小到足以安装在设计成通过各种心血管、神经血管和其它生物结构的很多导管内仍然很难。而且,PZT材料往往在相对高频的频域并不是表现很好。例如,很难设计和制造能够在对使生物组织成像有用的20MHz附近(和之上)的区域内操作的PZT。
[0032] 此外,为了形成PZT的圆柱形阵列(例如,希望包括在各种导管上的圆柱形阵列),必须从换能器的平板切割单独的PZT。单独的PZT可接着布置在导管上的圆柱形阵列中。作为结果,一些单独的PZT(或多组PZT)可能在切割和组装操作期间被切口或其它污染物损坏或污染。此外,单独的PZT的切割操作和到导管上的组装可导致单独PZT的操作特性的变化。因此,以前可用的PZT只在某些超声应用中得到使用。本公开提供了基于CMUT的超声系统和配备有这样的CMUT的导管,解决了PZT的至少一些缺点。如这里讨论的,在这里公开的基于CMUT的超声系统和导管也处理其它优点。
[0033] CMUT使用布置成形成电容器的两个板状结构来传输并检测相邻介质中的声波。板(或耦合到板的电极)可被反复充电,以使一个板相对于另一个板移动,从而产生声波。一般,交流电(AC)给板充电。在可选方案中,板可被充电到选定的电压(使用例如直流或DC信号),并可用于感测声波,这些声波撞击在被暴露的板上,因而使该板相对于另一个板移
6
CN 101868185 A
说 明 书
4/11页
动。被暴露的板的移动引起CMUT的电容的变化。可分析由CMUT产生的作为结果的电信号,以产生在CMUT周围的介质的图像。一些基于CMUT的超声系统包括开关,使得当开关在一个位置时,开关允许CMUT传输声波,而当开关在另一位置时,开关允许CMUT检测声波。[0034] CMUT可被单独地制造或可按各种阵列制造。例如,可制造CMUT的一维(1-D)阵列,其中各种CMUT以线性阵列形成。也可制造2-DCMUT阵列,其中各种CMUT以包括例如行和列的各种模式形成。行和列可产生通常正方形、矩形或其它形状的阵列。而且,单独的CMUT可被单独的操作;可结合其它CMUT操作;或可结合在特定的阵列或扫描仪中的所有CMUT操作。例如,驱动各种CMUT的信号可被计时来操作作为相控阵的多个CMUT,以在特定的方向上引导声能。
[0035] CMUT阵列可被形成为柔性的,以便阵列可符合具有期望或给定形状或曲率的表面、腔等。例如,CMUT阵列可被安装成符合特定仪器、导管或其它器件的形状。类似地,用于驱动CMUT(并感测来自其的信号)的IC(或其它电路)也可被形成为柔性的。此外,CMUT和IC可同时使用相同的技术或在不同的时间使用与这里公开的相同(或不同)的技术与彼此和仪器集成。[0036] 更具体地,一些实施方式的CMUT和IC可使用半导体或微机电系统(MEMS)制造和封装技术(下文中的“半导体”技术)彼此同时集成在柔性构件上。其上有CMUT和IC的柔性构件可被缠绕在导管(或其它器件)上,以形成具有基于CMUT的超声系统的导管。用作超声扫描仪的这些基于CMUT的超声系统可为前视的、侧视的或其组合。它们也可用于执行成像、治疗功能(例如,组织消融)或其组合。在一些实施方式中,其它换能器(例如,压力、温度等)可被制造并与CMUT和IC一起集成在柔性膜上。
[0037] 图1A对一个实施方式的基于电容式微机械换能器(CMUT)的超声系统示出柔性子组件的透视图。柔性子组件108包括CMUT阵列110、CMUT阵列110的支持性电子器件120和柔性构件130。在一些实施方式中,支持性电子器件120是以一个或多个集成电路(IC)的形式。柔性构件130机械地耦合CMUT阵列110和支持性电子器件120,同时允许CMUT阵列110和支持性电子器件120在组装期间相对于彼此移动。柔性构件130还可提供CMUT阵列110和支持性电子器件120之间的电连通性。而且,在CMUT阵列110内的每个CMUT元件灵活地耦合到彼此。同样,支持性电子器件120的各个部分可灵活地耦合到彼此。[0038] 图1B示出一个实施方式的基于CMUT的超声系统(例如,扫描仪)的透视图。更具体地,基于CMUT的超声系统109可从柔性子组件108形成。在一个实施方式中,柔性子组件108按参考箭头136所示卷成圆柱形形状,以形成基于CMUT的超声系统109。如图1B所示,基于CMUT的超声系统109可为侧视超声扫描仪。基于CMUT的扫描仪109可连接到导管的管腔或其它器件,并可用于使患者体内的组织成像。基于CMUT的扫描仪109也可将超声聚焦到通常相邻于扫描仪的区域,以进行HIFU消融。而柔性子组件108可缠绕在物体周围、卷到管子、部分管腔或管腔中、或形成其它形状(甚至具有空间曲率的那些形状)。[0039] 图2对一个实施方式的基于CMUT的超声系统示出另一柔性子组件的透视图。柔性子组件208包括圆形CMUT阵列210、支持性IC 220和柔性构件230。柔性构件230包括从IC 220突出并到达圆形CMUT阵列210的一对弓形臂232。臂232也可界定空腔234,这将允许臂232符合如图2B所示的基于CMUT的超声系统209的总的圆柱形形状。为了从柔性子组件208形成超声系统209,当柔性子组件208卷成圆柱形形状时,圆形CMUT阵列210
7
CN 101868185 A
说 明 书
5/11页
可向内折叠。因此,圆形CMUT阵列210的单独的元件可从基于CMUT的超声系统209指向远侧。因此,基于CMUT的超声系统209可为前视的、基于CMUT的超声扫描仪。基于CMUT的超声系统209也可将超声聚焦到扫描仪前方的区域中,以进行HIFU消融。[0040] 现在参考图3A,其对一个实施方式的基于CMUT的超声系统示出柔性子组件的透视图。柔性子组件308包括在柔性构件330上彼此平行放置并间隔开的CMUT阵列310和IC 320。CMUT阵列310可为单个元件CMUT或CMUT阵列(例如,一维、二维、1.5维或任何其它类型的CMUT阵列)。因此,柔性构件330的部分350跨越至少一些IC 320和CMUT阵列310之间的距离。柔性组件308可在柔性构件330的这些部分350处折叠,以形成紧凑的超声系统309(见图3B)。紧凑的超声系统309可类似于IC320的堆栈,CMUT阵列310在堆栈的一端,而柔性构件的部分350界定CMUT阵列310和IC 320之间的柔性构件的层。紧凑的超声系统309可被制造得足够小,以便它可安装在导管内和其它类似有限的空间内。虽然柔性组件308可被折叠成堆栈,它也可缠绕在物体周围、卷到管子或管腔中、或形成其它形状(甚至具有空间曲率的那些形状)。[0041] 现在参考图4-8,示出了使IC和CMUT阵列与柔性构件集成的各种方法。这些方法可使用各种半导体技术来执行IC和CMUT阵列与柔性构件的集成。实际上,在一些实施方式中,相同的半导体技术用于集成IC与柔性构件以及集成CMUT阵列与柔性构件。相反,基于PZT的超声扫描仪需要不同的技术来集成基于PZT的超声系统的PCT换能器和IC(或其它支持性电子器件)。
图4对一个实施方式的基于CMUT的超声系统示出使IC和CMUT与柔性构件集成
以形成柔性子组件408的方法。更具体地,使用各种半导体技术在晶片400(或某个其它基底)上制造柔性构件430。图4进一步示出,晶片400可用于将CMUT阵列410和IC 420与柔性构件430集成。在CMUT阵列410和IC 420的集成期间,可形成各种结构例如柔性构件430,其包括至少一个绝缘层431-435、至少一个传导层432-434和结合区439。在图4所示的方法中,可分开地制造CMUT阵列410和IC 420。
[0043] 部分地由于用于制造柔性构件430的半导体技术,相比于在基于PZT的超声系统中使用的印刷电路板(PCB)中的互连的相应尺寸,可在更大的程度上控制柔性构件430中形成的各种互连的尺寸。此外,图4所示的方法允许通过以较好的尺寸控制来制造多个传导层432-434而增加互连密度(与基于PZT的超声换能器互连密度相比)。因此,可制造根据各种实施方式的小型超声系统。[0044] 现在参考图4.1,绝缘层431可被涂覆并摹制到晶片400上,以形成柔性构件430的第一层。注意,晶片400可为硅晶片、玻璃晶片或某个其它基底,以及绝缘层431可由例如氧化物、氮化物、聚对二甲苯基、聚酰亚胺、聚合物、PDMS、Kapton等涂覆或形成。[0045] 传导层432之一可形成并摹制到晶片400上(如图4.2所示),以在柔性构件430内形成各种互连。如前所述,额外的绝缘层433-435和额外的传导层432-434可按需要被涂覆并摹制到晶片400上,以在柔性构件430内形成额外的互连(见图4.3)。传导层432-434的材料可为Al、Au、Cr、Ti、Cu等。
[0042]
图4.4示出结合区439可由在前面的各种互连上的传导材料制造和摹制,以与CMUT阵列410、IC 420和其它部件上的相应触头紧密配合。可根据在图4.4和4.5所示的过程中被选择用来使CMUT阵列410和IC420与柔性构件430集成的技术选择形成结合区
[0046]
8
CN 101868185 A
说 明 书
6/11页
439的材料。因此,如图4.5所示,CMUT阵列410和IC 420可位于结合区439上并与其键合。更具体地,可使用共晶键合、热压缩键合以及各种倒装键合方法来执行CMUT阵列410和IC 420与结合区439的在器件级或在晶片级的键合。包括柔性构件430、CMUT阵列410和IC 420的柔性子组件408接着可如图4.6所示与晶片400分离。柔性构件包括层431-435和结合区439。在一些实施方式中,集成的柔性子组件可接着随后被组装到超声系统中。因此,使用与用于集成IC 420与柔性构件430相同的技术(且更具体地,半导体批量处理技术)可集成CMUT阵列410与柔性构件430。
[0047] 图5对一个实施方式的基于CMUT的超声系统示出将IC和CMUT阵列与柔性构件集成的另一方法。更具体地,与图4所示在生产晶片(prime wafer)上形成柔性构件不同,图5中的柔性构件530在具有制造好的CMUT阵列510的SOI晶片上形成。[0048] 现在参考图5.1,在SOI晶片500上制造了CMUT阵列510。SOI晶片包括器件层501、绝缘层502和处理层503。在图5.2中,从CMUT制造基底的顶侧形成第一模式(例如,沟槽或开口)570、571。第一模式包括可界定晶片上的每个CMUT阵列510的边界的沟槽(或开口)571和可界定CMUT阵列510中的每个CMUT元件的边界的沟槽(或开口)570。沟槽的最深端可到达绝缘层502。第一模式(例如,沟槽或开口)570、571可在CMUT制造期间或之后完成。在该步骤之后,随后的处理可类似于从图4.1到图4.4的图4的方法,以在CMUT阵列上形成柔性构件530(图5.3)。如图5.4所示,IC 520可位于结合区539上并与其键合。更具体地,可使用共晶键合、热压缩键合以及各种倒装键合方法来执行IC 520与结合区539的在器件级或在晶片级的键合。可移除SOI晶片500的处理层503。包括柔性构件530、CMUT阵列510和IC 520的柔性子组件508接着可如图5.5所示与晶片500分离。此外,如图5.5所示,图5所示方法可能导致CMUT阵列510位于柔性构件530的一侧(例如,被制造在晶片500上的那一侧)上,而IC 520位于柔性构件530的另一侧上。
[0049] 图6对一个实施方式的基于CMUT的超声系统示出将IC和CMUT阵列与柔性构件集成的另一方法。更具体地,与图4所示在生产晶片上形成柔性构件不同,图6中的柔性构件630在其上制造有IC 610的SOI晶片上形成。[0050] 现在参考图6.1,可在SOI晶片600上制造支持性IC 620。SOI晶片包括器件层601、绝缘层602和处理层603。在图6.2中,可从IC制造基底的一侧(例如,顶侧)形成第一模式(例如,沟槽或开口)671。第一模式包括可界定晶片上的每个IC 610的边界的沟槽(或开口)671。沟槽的最深端可到达绝缘层602。在该步骤之后,随后的处理可类似于从图4.1到图4.4的图4的方法,以在IC 620上形成柔性构件630(图6.3)。如图6.4所示,CMUT阵列610可位于结合区639上并与其键合。更具体地,可使用共晶键合、热压缩键合以及各种倒装键合方法来执行CMUT阵列610与结合区639的在器件级或在晶片级的键合。可移除SOI晶片600的处理层603。包括柔性构件630、CMUT阵列610和IC 620的柔性子组件608接着可如图6.5所示与晶片600分离。
图7对一个实施方式的基于CMUT的超声系统示出将IC和CMUT阵列与柔性构件
集成的另一方法。在图7所示的方法中,可使用各种半导体技术在各种CMUT阵列710和IC 720上形成柔性构件730。图7的方法可用于通过增加传导层的数量并减小在柔性构件730中的传导线的线宽和间隔来增加所形成的超声系统的互连密度(与基于PZT的超声系统和常规PCB相比)。而且,图7的方法可作为批量处理执行,从而利用与半导体批量处理技术
[0051]
9
CN 101868185 A
说 明 书
7/11页
相关的规模效益。因此,很多CMUT阵列710和IC720可同时集成在各种柔性构件730上。[0052] 现在参考图7.1,其中所示的方法可使用晶片700来形成柔性构件730并将CMUT阵列710和IC 720与其集成。更具体地,图7示出使用可包括嵌入式绝缘层702和处理层703的SOI晶片700。此外,图7示出可在晶片700上制造各种结构,例如闩锁结构705、绝缘层731和732以及传导层732。[0053] 更具体地,图7.1示出闩锁结构705可在晶片700上形成。可在腔721的璧上设计这些闩锁结构,以将CMUT阵列710和IC 720锁在腔721中的适当位置,腔721在为CMUT阵列710和IC 720选择的位置处形成。使用闩锁结构705可将CMUT阵列710和IC 720锁在其各自的腔721中适当的位置(图7.2)。可接着使用各种半导体技术例如旋涂、蒸发、溅射、沉积等在晶片700上形成并摹制绝缘层731(以提供对CMUT阵列710和IC 720的通路)(图7.3)。而且,绝缘层731可从各种绝缘材料例如聚对二甲苯基、PMDS、聚酰亚胺、聚合物、氧化物、氮化物等形成。[0054] 现在参考图7.4,传导层732可在晶片700上形成,以提供在柔性构件730内以及在CMUT阵列710、IC 720和各种其它部件之间的互连。传导层732可从各种传导材料例如Al、Au、Cu、Ti等形成并被摹制在晶片700上。而且,可使用各种半导体技术例如蒸发、溅射、沉积等制造传导层732。如果需要,额外的传导层731和传导层732可在晶片700上形成,以增加所形成的柔性构件730的互连密度。图7.5示出柔性绝缘层733作为柔性子组件708的保护层可形成并被摹制在晶片700上。柔性绝缘层733可从各种绝缘材料例如聚对二甲苯基、PMDS、聚酰亚胺、聚合物、氧化物、氮化物等形成,并可通过旋涂、蒸发、溅射、沉积等被制造。柔性绝缘层733可被制造有足够的厚度和材料特性,以保护柔性构件730(和其各个层731-732以及CMUT阵列710和IC 720)免遭机械损伤和不受环境的影响。[0056] 图7.6示出,可从晶片700的表面移除处理层703和绝缘层702,该表面与晶片700的托住CMUT阵列710、IC 720和柔性构件730的那一侧相对。因此,可从晶片700移除包括集成的柔性构件730、CMUT阵列710和IC 720的柔性子组件708。相应地,集成的柔性构件730可用于组装各种超声系统。
[0057] 图8对一个实施方式的基于CMUT的超声扫描仪示出将IC和CMUT阵列与柔性构件集成的又一方法。更具体地,图8.1示出CMUT阵列810可首先被制造在晶片800上,接着IC 820可被闩锁结构805锁在具有所制造的CMUT阵列的晶片中适当的位置。相反,图8.2示出IC 820可首先被制造在晶片800上,接着CMUT阵列810可被锁在具有所制造的IC的晶片中适当的位置。在图8.1和8.2所示的方法中,柔性构件830及其与CMUT阵列810和IC 820的集成可类似于图7.2-7.6所示的方法。完成的柔性子组件可类似于图7.6中的柔性子组件708。
[0058] 图9示出柔性组件900的顶视图,其中多个CMUT阵列910和多个IC 920封装在柔性构件930上以形成一个实施方式的多个基于CMUT的柔性子组件908。使用图4-8所示的方法可构造具有多个柔性子组件908的柔性组件900。每个柔性子组件908可用于构造基于CMUT的超声系统。可使用类似于这里公开的方法的方法来制造图9所示的基于CMUT的超声柔性组件900。更具体地,图9中的放大窗中的图示出从柔性子组件908构造的基于CMUT的超声系统的透视图,柔性子组件908可包括使用各种半导体批量处理技术与柔性
[0055]
10
CN 101868185 A
说 明 书
8/11页
构件930集成的CMUT阵列910和IC 920。而且,可制造柔性构件930中的各种接触垫937以提供与在基于CMUT的超声系统908外部的部件的电子接口。因此,可同时以各种半导体技术提供的尺寸精度制造柔性构件930中的互连936(在CMUT阵列910、IC 920和各种其它部件之间)和接触垫937。
[0059] 在图4-8中所述的方法中,CMUT阵列(例如,410、710)和IC(例如,420、720)中的至少一个可从第一基底(例如,其原始制造基底)分离,并接着可集成在第二封装基底(例如,400、700)上的柔性构件(例如,430、730)上。因此,CMUT阵列和IC中的至少一个可首先在其原始制造基底上被制造,并可接着被分离以及可准备用于这里描述的封装方法。通常,多个IC可单独地集成在柔性构件上。但它们也可首先在其原始制造基底上与柔性子构件集成以形成柔性IC,接着柔性IC可与CMUT阵列一起集成在封装基底上的柔性构件上。通常,具有多个元件的CMUT阵列可被制造为柔性的,之后它们与IC一起集成在封装基底上的柔性构件上。图10-12示出制造可在图4-8中的封装方法以及其它方法中使用的柔性CMUT阵列(例如,410、720)和柔性IC(例如,410、720)的几种方法。[0060] 参考图10-12,在各种超声系统的电子器件(和其它部件)中形成CMUT阵列中的多个元件和多个芯片的贯穿晶片互连可能是合乎需要的。而且,从柔性CMUT阵列的非作用侧形成互连可能是合乎需要的。因此,在CMUT阵列和IC中制造贯穿晶片互连可能是合乎需要的。在Huang于2006年5月18日提交的标题为“THROUGH-WAFERINTERCONNECTION”的国际专利申请号PCT/IB2006/051566、Huang于2006年6月19日提交的标题为“FLEXIBLEMICRO-ELECTRO-MECHANICAL TRANSDUCER”的美国专利申请号11/425,128、Huang于2008年12月3日提交的标题为“THROUGH-WAFERINTERCONNECT”的国际专利申请号________、以及Huang于2008年12月3日提交的标题为“PACKAGING AND CONNECTINGELECTROSTATIC TRANSDUCER ARRAYS”的国际专利申请号________中描述了包括贯穿晶片互连的柔性CMUT阵列或IC和制造这样的CMUT阵列或IC的方法,这些专利在这里如同所阐述的被全部并入。
[0061] 如前述专利申请中所述的,柔性CMUT阵列或IC可通常如下形成。分离沟槽的模式可在托住IC、CMUT阵列或其组合的晶片中形成。沟槽可从晶片的托住IC或CMUT阵列的侧面形成。这些沟槽可形成到选定的深度,并可随后被填充期望的材料(例如,绝缘体)。可从与托住IC或CMUT阵列的侧面相对的晶片侧面移除材料,直到沟槽被暴露。图10-12示出形成各种实施方式的柔性CMUT或IC的各种方法。[0062] 现在参考图10,很多超声扫描仪包括多于一个的IC以支持超声换能器,且也许执行其它功能。根据一个实施方式,可使用半导体技术使多个IC与超声扫描仪的柔性构件集成。更具体地,IC可被制造为柔性IC并接着与柔性构件集成。[0063] 此外,图10示出可从SOI晶片1000制造具有柔性子构件1030(见图10.5)和多个IC芯片1020a-1020c的柔性IC 1020,在SOI晶片1000上制造各种结构,例如:器件层1001、绝缘层1002、处理层1003、一个或多个IC 1020、绝缘层1031、传导层1032和各种沟槽1070。如图10.1所示,可在SOI晶片1000上制造多个IC 1020a-1020c,且厚度可被器件层1001所限定。图10.2示出沟槽1070的模式可被蚀刻而通过器件层1001到达绝缘层1002。在随后的步骤中,包括绝缘层1002和处理层1003的晶片1000的背侧可被移除以到达沟槽1070,从而产生柔性IC 1020。绝缘层1231可按被选择成保持IC 1020a-1220c上的
11
CN 101868185 A
说 明 书
9/11页
不同触头暴露的模式被涂覆到晶片1000上(如图10.3所示)。绝缘层1031可由柔性材料例如聚对二甲苯基、聚合物、聚酰亚胺、聚二甲基硅氧烷(PDMS)、氧化物、氮化物等制成。在图10.5中,柔性子构件1030包括一个绝缘层1031和一个传导层1032。然而,通过重复图10.3和图10.4的处理步骤,柔性子构件1030可包括多个绝缘层1031和多个传导层1032,以增加其连接密度。
[0064] 图10.4示出传导层1032可按被选择成提供与IC 1020的互连的模式被涂覆到晶片1000上。如果需要(例如)增加互连的密度,额外的绝缘层1031和传导层1032可被涂覆到晶片1000上。可如图10.5所示移除处理层1003和绝缘层1002以暴露沟槽1070。注意,由于沟槽1070暴露,使IC彼此连接的唯一材料可为具有绝缘层1031和传导层1032的柔性子构件1030。因此,通过选择这些层1031和1032的尺寸和材料,可制造柔性子构件1030以允许各种IC芯片1020在组装期间相对于彼此移动,然而仍然保持互连。因此,柔性子构件1030可被制造成柔性的,而层1031和1032形成柔性IC 1020。随后,各种CMUT、CMUT阵列和其它器件可使用图4-8所示的方法以及其它方法与柔性IC 1020一起集成在柔性构件中。
[0065] 现在参考图11,其对一个实施方式的基于CMUT的超声系统示出制造CMUT阵列与多个CMUT元件的另一方法。图11所示的CMUT阵列可使用半导体技术与超声系统的柔性构件集成。更具体地,CMUT阵列可被制造为柔性的CMUT阵列并接着与柔性构件集成。图11中的左侧的图示出多个CMUT阵列1110,1110a和1110b在同一基底1100上被制造。图11中的右侧的图是CMUT阵列1110的部分的详细视图,其更详细地示出CMUT阵列1110中的CMUT元件1110-1和1110-2的结构。[0067] 更具体地,图11.1示出柔性CMUT阵列1110可从SOI晶片1100(包括处理晶片1103、绝缘层1102和器件层1101)制造,在SOI晶片1100上可制造基底或底部电极1101、绝缘层1102、CMUT阵列1110(或CMUT元件)、绝缘层1131和各种沟槽1170和1171。每个CMUT阵列1110可包括柔性膜1111、第一电极1113、腔1116和弹簧固定器1118连同其它可能的部件。可在图11.1-11.4中所示的详细视图中更详细地看到CMUT的这些部件1111、1113、1116和1118。此外,在一些实施方式中,CMUT可为嵌入式弹簧ESCMUT。[0068] 图11.2示出一旦制造了CMUT阵列1110,就可制造沟槽1170(其使CMUT彼此分离)的模式。这些沟槽1170可足够深,以便到达绝缘层1102,其如这里讨论的可被移除以暴露沟槽。在一些实施方式中,沟槽1170和1171在CMUT阵列1110的制造期间形成。在沟槽1170形成的同时,可制造另一模式的沟槽1171。这些沟槽1171可被形成为使得当绝缘层1102被移除时,沟槽1171也可被暴露,从而使各个CMUT阵列1110彼此分离。沟槽1170可界定单独的CMUT换能器元件1110-1和1110-2的边界。沟槽1171可界定在同一晶片上的单独的CMUT换能器阵列1110、1110a和1110b的边界。
[0069] 绝缘层1131可被摹制和涂覆在晶片1100上以如图11.2所示保持CMUT阵列1110的作用表面暴露。当绝缘层1131被制造时,制造它的材料可填充沟槽1170和1171。绝缘层1131可由各种半导体材料例如聚对二甲苯基、聚酰亚胺、聚合物、PDMS、氧化物、氮化物等制成。
[0066] [0070]
图11.4示出绝缘层1102可被移除以暴露沟槽1170和1171(其可分别位于单独的
CMUT元件和CMUT阵列1110之间)。因此,CMUT阵列1110可具有多个CMUT元件1110-1和
12
CN 101868185 A
说 明 书
10/11页
1110-2,可彼此分离,如图11.4所示。这些CMUT阵列1110和CMUT元件随后可使用图4-8所示的方法集成在各种柔性构件例如柔性构件130、230和330上(见图1-3)。虽然图11示出可制造CMUT阵列1110的晶片1100可为氧化物上硅晶片,其它类型的晶片可用于制造CMUT阵列1110。例如,生产晶片可用于制造CMUT阵列1110(或CMUT元件)。
[0071] 图12示出从生产晶片制造CMUT阵列的各种实施方式的方法。更具体地,图12A示出沟槽1270和1271可被蚀刻(从托住CMUT阵列1210的晶片的侧面)到选定的厚度。接着,在一些实施方式中,晶片1200可变薄(从与CMUT阵列1110相对的侧面),直到沟槽1170和1171被暴露。因此,被托在生产晶片1100上的CMUT阵列1110(或CMUT元件)可彼此分离。
[0072] 现在参考图12B,示出了制造一个实施方式的CMUT阵列1210的另一方法。在图12B所示的方法中,该方法可以包括嵌入式腔1208的晶片1200开始。可在晶片1200中与腔1208相邻的区域上制造CMUT阵列1210。沟槽1270和1271可接着被蚀刻到晶片1200中,并可到达嵌入式腔1208。其后,在一些实施方式中,晶片1200可变薄(例如,可移除处理晶片1203)以暴露沟槽1270和1271,从而使CMUT阵列1210(以及CMUT元件)分离。[0073] 现在参考图12C,示出了制造一个实施方式的CMUT阵列1210的另一方法。与在完成CMUT制造之后形成沟槽1270和1271不同,沟槽1270和1271可在CMUT制造期间形成。例如,图12C中的沟槽1270和1271可在形成膜1212和顶部电极1213之前被蚀刻。根据一些实施方式,在图11.2所示的方法中,嵌在膜1212之下的沟槽可在沟槽蚀刻期间避免蚀刻电极1213和膜1212。这对一些CMUT系统的实现可能是合乎需要的。在制造了具有嵌入式沟槽1270和1271的CMUT阵列之后,下面的过程可用于形成柔性CMUT阵列1210并类似于图11、图12A和图12B所示的过程。
[0074] 基于CMUT的超声扫描仪提供了优于基于PZT的超声扫描仪的几个优点。这些优点部分地从CMUT的相对低的声阻抗产生。CMUT一般具有比空气、水、组织等低的声阻抗。作为结果,且与PZT不同,可使用CMUT,而不使用使CMUT的声阻抗与周围介质的声阻抗匹配的材料层。
[0075] PZT还从其前表面和后表面传输声能(即,声波)。作为这个特征的结果,PZT需要其后表面上的衬背层以吸收从其发射的声能。否则,从PZT的后部传输的声波可从各个结构反射并干扰PZT的操作。然而,在吸收从PZT的后部传输的声能中,衬背层产生热。作为结果,PZT可能在操作期间变暖或甚至变热,从而减小用在某些应用例如HIFU中的满意度。因为CMUT只从前表面传输声能,所以,基于CMUT的超声扫描仪不用考虑由于方向错误的声能而产生的热。此外,衬背层(和前面讨论的声匹配层)复杂化了基于PZT的超声系统的制造。相反,基于CMUT的超声系统可省略这些层和所伴随的制造步骤。而且,使用半导体制造技术可生产基于CMUT的超声扫描仪。因为这些半导体技术受益于半导体工业的不同部分的数十年的投资,这些技术可在所生产的CMUT中提供相对高的水平的一致性、精度、可重复性、尺寸控制、可重复性等。仍然进一步地,很多前述半导体技术可为批量处理。作为结果,与这些技术相关的规模效益可允许基于CMUT的超声系统的较低的每单位成本,特别是当可能需要相对大量的超声系统时。例如,因为在特定晶片上的CMUT阵列的所有特征可被同时摹制,与单个CMUT阵列的制造比较,多个CMUT阵列的制造不引入(或引入很少的)开销。
[0076]
13
CN 101868185 A[0077]
说 明 书
11/11页
此外,因为可使用半导体技术生产基于CMUT的超声系统,集成电路(IC)和其它半
导体器件可相对容易地与CMUT阵列集成。因此,可使用相同的技术在同一晶片上同时制造CMUT阵列和IC。在可选方案中,CMUT和IC可在不同的时间集成到各种换能器中。此外,可从相同或类似的生物相容的材料制造CMUT和IC。[0078] 相反,由于PZT材料所强加的限制,使用半导体技术制造PZT和集成PZT与其它部件(例如,IC)是不可行的。而且,与可用PZT有关的制造和集成技术具有几个缺点,包括是劳动密集的、昂贵的、受到制造变化影响等。此外,当单独的PZT器件的尺寸接近相对高频器件的所需的小尺寸(例如,数十微米)时,可利用的PZT技术遭受额外的困难。例如,单独的PZT器件的分离通过研磨和切割技术来控制,这些技术导致一个器件到另一器件的易变性。
[0079] 因此,基于CMUT的超声系统享有优于基于PZT的超声系统的性能和成本优点。更具体地,因为超声系统有具有高频操作范围和小物理尺寸的换能器一般是合乎需要的,基于CMUT的超声系统可具有优于基于PZT的超声系统的优点。[0080] 首先,可使用比PZT的超声系统更好的尺寸控制来制造基于CMUT的超声系统。更具体地,可使用小于大约1微米的最小尺寸制造基于CMUT的超声系统,而基于PZT的超声系统的最小尺寸大于大约10微米。因此,基于CMUT的超声系统可被相应地制造有较小的元件间距。其次,基于CMUT的超声系统互连的最小宽度和间距可小于大约2-3微米,而基于PZT的超声系统的最小互连宽度和间距大于大约25微米。因此,可制造具有比基于PZT的超声系统互连的密度高的基于CMUT的超声系统互连。因此,基于CMUT的超声系统可具有更多的换能器(对于给定的系统尺寸)或可比基于PZT的超声系统更小(对于给定数量的换能器)。[0081] 而且,给定基于CMUT的超声扫描仪的改进的器件尺寸,与基于PZT的超声扫描仪比较,可产生可在高达大约100MHz操作的基于CMUT的超声扫描仪。相反,基于PZT的超声扫描仪被限制到完全低于20MHz的操作区域。此外,因为超声换能器的分辨率取决于其工作频率,可制造具有相应地提高的分辨率的基于CMUT的超声扫描仪。出于类似的原因,基于CMUT的超声扫描仪的带宽比基于PZT的超声扫描仪的带宽更宽。因此,基于CMUT的超声扫描仪可适用于比基于PZT的超声扫描仪更多的情况。
[0082] 基于CMUT的超声系统的较简单的设计和制造(与基于PZT的超声换能器比较)也产生某些优点。例如,因为可使用相同的技术制造用于支持CMUT的IC和CMUT本身,CMUT和IC联合在一起的制造可被简化。此外,因为CMUT不需要匹配层或衬背层,也可消除与这些层相关的制造步骤。同样,与使CMUT和IC集成相关的步骤也可被消除,或如果没有被消除,则可被简化。
[0083] 参考其中的具体实施方式描述了本公开,但本领域技术人员应认识到,本公开不限于此。可单独或联合地使用上述公开的各个特征和方面。进一步地,可在超出这里所述的环境和应用的任何数量的环境和应用中利用本公开而不偏离说明书的更宽的精神和范围。我们要求落在本公开的范围和精神内的所有这样的更改和变化。说明书和附图因此被视为例证性的而不是限制性的。
14
CN 101868185 A
说 明 书 附 图
1/11页
15
说 明 书 附 图
图3A
图3B
图4.1
图4.2
图4.3
16
2/11页
CN 101868185 A
CN 101868185 A
说 明 书 附 图
3/11页
图4.4
图4.5
图4.6
图5.1
图5.2
17
CN 101868185 A
说 明 书 附 图
4/11页
图5.3
图5.4
图5.5
图6.1
18
CN 101868185 A
说 明 书 附 图
5/11页
图6.2
图6.3
图6.4
图6.5
19
CN 101868185 A
说 明 书 附 图
6/11页
图7.1
图7.2
图7.3
图7.4
图7.5
20
CN 101868185 A
说 明 书 附 图
7/11页
图7.6
图8.1
图8.2
21
CN 101868185 A
说 明 书 附 图
8/11页
图9
22
CN 101868185 A
说 明 书 附 图
9/11页
图10.1
图10.2
图10.3
图10.4
图10.5
23
CN 101868185 A
说 明 书 附 图
10/11页
图11.1
图11.2
图11.3
图11.4
24
CN 101868185 A
说 明 书 附 图
11/11页
图12A
图12B
图12C
25
因篇幅问题不能全部显示,请点此查看更多更全内容