地铁屏蔽门电源系统方案比较
摘要:屏蔽门作为城市地铁中的一种重要安全装置,不仅对于城市地铁以及乘客的安全有着重要的保障作用,同时也能够有效降低地铁运营过程中产生的能耗,提高城市地铁运营效益,具有积极作用和意义。屏蔽门电源系统是地铁屏蔽门运行的重要系统,其供电稳定性与可靠性直接影响着地铁运营行驶的安全性和可靠性,是地铁运营行驶与安全管理中研究和关注的重点。本文将在对于地铁屏蔽门电源系统及其设计要求分析基础上,对于常见的地铁屏蔽门电源系统设计方案进行分析对比,以提高其设计水平,保证地铁及其屏蔽门系统的安全可靠工作运行。
关键词:地铁;屏蔽门系统;安全装置;运营行驶;安全性;电源系统;供电方案;分析
在城市地铁中,屏蔽门系统主要安装设置在城市地铁的展台边缘处,以实现地铁运行区域与站台公共区域的分离,并在列车到达或者是出发时借助屏蔽门系统的控制装置进行屏蔽门的自动开启和关闭控制,在地铁乘客提供一个更加安全舒适与安静的乘车环境。同时,屏蔽门还能够对于列车行驶过程中列车行驶区域与站台区域之间的气流交换进行有效的控制和减少,从而实现地铁运行中环控系统的能源消耗,提高地铁的运营行驶效益。最后,城市地铁的屏蔽门系统也是实现其运营行驶中的无人驾驶模式的重要技术支撑,在整个地铁的安全稳定以及高效运营行驶中有着非常重要的作用和影响。电源系统作为地铁屏蔽门运行实现的重要系统,其供电稳定性与可靠性直接影响着地铁屏蔽门系统运行的稳定性和可靠性,在地铁运营行驶中具有非常重要的作用影响,是地铁运营行驶与管理中严重和关注的重点内容,下文在对于地铁屏蔽门电源系统结构组成与设计要求分析基础上,对其供电方案进行对比分析,以保证地铁安全可靠运营行驶。
一、地铁屏蔽门电源系统的电源结构与要求分析
1、地铁屏蔽门电源系统主要结构分析
通常情况下,在地铁运营行驶中,地铁屏蔽门是一种由一级用电负荷并通过车站低压配电系统和双电源切换箱提供两路独立的三相交流输入电源实现地铁运行安全屏蔽与管理控制系统。地铁屏蔽门工作运行过程中,主要由车站低压配电系统通过双电源切换箱提供的独立三相交流电源进行运行供电支持,并且该电源系统中设置有一个主电源和备用电源,以对于地铁屏蔽门工作运行中所需要的电源能量进行自动切换与供给保障,满足地铁屏蔽门工作运行的电源需求。
地铁屏蔽门电源系统主要由两个结构部分组成,即驱动电源与控制电源,并且每个地铁屏蔽门结构在工作运行中所需要的电源要求也各不相同,其中,地铁屏蔽门的两侧站台所需要的电源大小为24kvA,而地铁屏蔽门的三侧站台所需要的电源大小为36kvA[1]。此外,地铁屏蔽门电源系统主要由双电源切换箱以及配电盘、不间断电源等设备结构组成,多设置在地铁屏蔽门的控制中心,并且在地铁屏蔽门工作运行过程中一旦发生交流停电情况,能够持续为地铁屏蔽门的工
作运行提供一小时的电源供给,实现地铁屏蔽门双侧门5次开关保障,以满足地铁屏蔽门电源切换需求。
在地铁屏蔽门电源系统的两个结构电源中,驱动电源主要为地铁屏蔽门的门机驱动设备进行电源需求提供和满足,其电压大小一般为DC110V。在地铁工作运行过程中,由于地铁屏蔽门作为地铁运行的核心系统,不仅对于安全性以及可靠性的要求比较高,并且要求其控制管理开展与实施比较方便,因此,在进行地铁屏蔽门系统的电源供给中多通过UPS在线式热插拔供电,对于地铁屏蔽门系统的电源需求进行提供满足,保证地铁屏蔽门系统门机驱动设备的安全稳定工作运行。其次,地铁屏蔽门电源系统的控制电源结构部分,主要是针对屏蔽门系统控制结构部分进行运行所需要的电源提供和满足,其中包括地铁屏蔽门的主控机以及站台端头控制盒等控制设备,其电压大小多为DC24V以及DC110V[2]。通过上述两个结构部分,对于地铁屏蔽门工作运行中所需的电源大小进行提供和满足,以保证地铁屏蔽门的安全可靠工作运行。
2、地铁屏蔽门电源系统要求分析
结合地铁屏蔽门电源系统的两个电源结构及其主要功能作用,在实际工作运行中,实现屏蔽门门机设备供电支持的驱动电源结构部分,由于需要满足屏蔽门启动速度比较快、启动运行动作迅速等要求,在供电运行与支持过程中主要采用直流电机进行发电运行,因此进行屏蔽门电源系统的驱动电源设计时,就需要结合直流电机启动运行的特征需求,对于正常启动的地铁屏蔽门电源功率要控制在3KW至5KW之间,而地铁屏蔽门启动运行瞬间的电源需要达到8KW至40KW之间。此外,结合地铁屏蔽门系统运行需求,驱动电源的电压等级通常有110KV和48KV两种类型,驱动电源的单台电机功率要保证在80W至150W之间,并且该功率值还具有突出的不确定性。
其次,地铁屏蔽门电源系统的控制电源结构在供电运行中,一般要求供电电压为DC24V与DC110V两种等级类型。其中,DC24V电压等级的应用相对比较常见,它在实际供电运行中由于地铁屏蔽门的电源线路连接相对较长,因此,会在地铁屏蔽门控制电源安全回路中采用较高的直流电压,以进行地铁控制系统运行所需的电源提供和支持。最后,在地铁屏蔽门监控系统中通常会进行DC24V和AC220V两种供电电压等级设置,其中,用于地铁屏蔽门控制台运行支持的供电电压多以AC220V电源电压为主,以满足地铁控屏蔽门监控系统工作运行的电力需求。
二、地铁屏蔽门电源系统常用方案与比较
1、地铁屏蔽门电源系统的常见方案分析
结合地铁屏蔽门电源系统的设计应用实例,实际供电设计中主要以直流和交流两种供电方案为主,以对于地铁屏蔽门电源系统的供电需求进行设计和满足实现。
其中,地铁屏蔽门交流供电方案主要是以在线式UPS作为电源系统的核心结构,同时通过在地铁屏蔽门电源系统中配置AC/DC模块,以实现地铁屏蔽门工作运行中DC24V以及DC110V两种电压等级的电源提供和满足,保障地铁屏蔽门的安全可靠工作运行[3]。在地铁屏蔽门的实际工作运行中,电源系统的驱动电源结构部分主要为屏蔽门门机驱动设备进行稳定的交流电源提供,同时通过主备电源电机实现地铁屏蔽门主电源故障下的自动切换与运行供电保障,满足地铁屏蔽门门机驱动设备的电源需求。如下图1所示,为地铁屏蔽门电源系统交流供电方案的结构原理示意图。
图1 地铁屏蔽门电源系统交流供电方案的结构原理示意图
需要注意的是,该地铁屏蔽门电源系统供电方案在实际设计应用中,首先对于UPS功率的选择确定,需要结合地铁屏蔽门开关时最大冲击负荷情况进行确定,此外,该中供电方案供电运行中,UPS输出的交流电源在通过ACD/DC模块进行输出电压值控制中,模块结构需要应用N+1模式进行设计实现,以满足电源供电与运行需求。
其次,地铁屏蔽门电源系统的直流供电方案在实际设计应用中,主要通过将直流电源作为电源系统供电的核心部分,同时进行DC/DC结构模块的设置,以为地铁屏蔽门工作运行提供DC24V电压等级的电源。也就是说,地铁屏蔽门系统在实际工作运行中,直流供电方案在进行屏蔽门工作运行所需电源提供和满足中,主要通过三相交流电源借助AC/DC模块进行DC110V电压电源提供,而AC/DC模块在进行电源电压转换提供过程中,一部分通过N+1备份形式,进行DC110V电压电源的提供满足,以保证地铁屏蔽门运行所需电源电压,另一部分在进行DC110V与DC24V两种电源电压的提供满足,并由DC24V电源电压借助DC/DC模块进行屏蔽门工作运行所需电源的提供和满足[4]。在实际供电运行中两部分模块之间主要使用晶闸管进行连接以避免放电情况发生,并且在电源系统的交流供电停止情况下,通过蓄电池为地铁屏蔽门系统运行所需的电源电压进行提供和满足。如下图2所示,为地铁屏蔽门电源系统直流供电方案的结构原理示意图。
图2 地铁屏蔽门电源系统直流供电方案的结构原理示意图
2、地铁屏蔽门电源系统方案对比分析
在上述的两种地铁屏蔽门电源系统供电方案中,其中,交流供电方案在地铁屏蔽门系统供电运行支持中,如果交流供电方案设计中只备用设置了一个AC/DC模块,那么AC/DC模块出现两个以上的模块损坏情况时,就会导致驱动电源无法正常共工作运行,从而造成交流供电方案失败。此外,如果出现交流停电并且UPS逆变发生损坏,或者是交流电池出现损坏等,也会造成交流供电方案无法正常供电运行。而对于地铁屏蔽门电源系统的直流供电方案来讲,其供电
运行中如果出现交流停电并且电池损坏,或者是电源电压的控制供电模块出现损坏等,也会造成直流供电方案无法正常供电运行。
针对这种情况,在进行上述两种地铁屏蔽门电源系统供电方案对比分析中,应注意从两种方案的故障消除方式以及供电备用的可靠性、供电运行经济性等方面,对于两种供电方案进行对比分析,以促进地铁屏蔽门电源系统供电设计可靠性提升,保证地铁屏蔽门系统的安全可靠工作运行。首先,在供电运行的故障及消除方式对比中,交流供电方案中容易发生故障问题突出结构主要有蓄电池组以及逆变、升压结构模块,解决故障主要依靠UPSN+1备份消除;而直流供电方案只存在电池组一个故障点,故障消除则是通过电池组备份方式实现[5]。其次,在两种供电方案备份的可靠性对比中,交流供电方案故障发生时,蓄电池组需要在升压以及逆变等结构作用下实现供电运行,而直流供电则直接通过蓄电池组进行供电运行。最后,两种供电方案的供电运行经济性对比中,结合地铁屏蔽门驱动运行负荷特征,交流供电需要在两级功率变换下实现供电满足,而直流供电方案只需要一级功率变换满足供电需求,经济性更加突出。
三、结束语
总之,电源系统作为地铁屏蔽门的重要系统,对于地铁的安全可靠运营行驶有着重要的作用和影响。进行地铁屏蔽门电源系统供电方案的对比分析,有利于提高地铁屏蔽门电源系统供电设计质量和水平,保证电源系统供电的可靠性和稳定性,从而对于地铁的安全可靠运营行驶进行保障,具有非常重要的积极作用和意义。
参考文献
[1]谭坚文,沈卫东,伍虹霖,王建立,杜明磊.电磁脉冲对方舱簧片屏蔽门耦合效应的数值分析[J].核电子学与探测技术.2013(10).
[2]孙红印,张哲晨.浅谈地铁屏蔽门控制UPS系统的优化[J].城市建设理论研究(电子版).2011(15).
[3]杨昭,马锋,贾士红,余龙清.地铁新环控系统可行性分析及性能优化[J].天津大学学报.2012(3).
[4]曹荣光,由世俊,董书芸.北方地铁屏蔽门系统能耗分析及节能改造[J].重庆大学学报(自然科学版) .2009(2).
[5]于敏,何正友,钱清泉.基于HSRN的地铁综合监控系统可靠性分析[J].铁道学报.2012(2).
因篇幅问题不能全部显示,请点此查看更多更全内容