您的当前位置:首页正文

部编版四年级数学(下册)知识要点

2020-09-01 来源:好走旅游网


部编版四年级数学(下册)知识要点

第一单元四则运算

1、加、减的意义和各部分间的关系

(1)把两个数合并成一个数的运算,叫做加法。

(2)相加的两个数叫做加数。加得的数叫做和。

(3)已知两个数的积与其中的一个加数,求另一个加数的运算,叫做减法。

(4)在减法中,已知的和叫做被就减数……。减法是加法的逆运算。

(5)加法各部分间的关系:

和=加数+加数

加数=和-另一个加数

(6)减法各部分间的关系:

差=被减数-减数

减数=被减数-差

被减数=减数+差

2、乘、除法的意义和各部分间的关系

(1)求几个相同加数的和和的简便运算,叫做乘法。

(2)相乘的两个数叫做因数。乘得的数叫做积。

(3)已知两个因数的积与其中一个因数,求另一个因数的运算,叫做除

法。

(4)在除法中,已知的积叫做被除数…… 。除法是乘法的逆运算。

(5)乘法各部分间的关系:

积=因数×因数

因数=积÷另一个因数

(6)除法各部分间的关系:

商=被除数÷除数

除数=被除数×商

被除数=商×除数

(7)有余数的除法,

被除数=商×除数+余数

2、加法、减法、乘法、除法统称为四则运算

3、四则混和运算的顺序

(1)在没有括号的算式里,如果只有加、减法,或者只有乘、除法,都要按(从左往右)的顺序计算;

(2)在没有括号的算式里,如果既有乘、除法,又有加、减法,要先算(乘、除法),后算(加、减法);(先乘除,后加减)

(3)在有括号的算式里,要先算括号里面的,后算括号外面的。

4、有关0 的计算

①一个数和0 相加,结果还得原数:

a + 0 =a 0 + a = a

②一个数减去0,结果还得这个数:

a - 0 = a

③一个数减去它自己,结果得零:

a - a = 0

④一个数和0 相乘,结果得0:

a × 0 = 0 ; 0 × a = 0

⑤0 除以一个非0 的数,结果得0:

0 ÷ a = 0 ;

⑥ 0 不能做除数:

a÷0 = (无意义)

5、租船问题。

解答租船问题的方法:先假设、再调整。

第二单元观察物体二

1、正确辨认从上面、前面、左面观察到物体的形状。

2、观察物体有诀窍,先数看到几个面,再看它的排列法,画图形时要注意,只分上下画数量。

3、从不同位置观察同一个物体,所看到的图形有可能一样,也有可能不一样。

4、从同一个位置观察不同的物体,所看到的图形有可能一样,也有可能不一样。

5、从不同的位置观察,才能更全面地认识一个物体。

第三单元运算定律

1、加法运算定律:

①加法交换律:两个数相加,交换加数的位置,和不变。

a+b=b+a

②加法结合律:三个数相加,可以先把前两个数相加,再加上第三个数;或者先把后两个数相加,再加上第一个数,和不变。

(a+b) +c=a+(b+c)

③加法的这两个定律往往结合起来一起使用。

如:165+93+35=93+(165+35)

2、连减的性质:一个数连续减去两个数,等于这个数减去那两个数的和。

a-b-c=a-(b+c)

3、乘法运算定律:

①乘法交换律:两个数相乘,交换因数的位置,积不变。

a×b=b×a

②乘法结合律:三个数相乘,可以先把前两个数相乘,再乘以第三个数,也可以先把后两个数相乘,再乘以第一个数,积不变。

(a×b) ×c=a×(b×c)

乘法的这两个定律往往结合起来一起使用。

如:125×78×8 的简算。

③乘法分配律:两个数的和与一个数相乘,可以先把这两个数分别与这两个数相乘,再把积相加。

(a+b) ×c=a×c+b×c

4、连除的性质:一个数连续除以两个数,等于除以这两个数的积。

a÷b÷c=a÷(b×c)

5、有关简算的拓展:

102×38-38×2

125×25×32

37×96+37×3+37

125×88

3.25+1.98

10.32-1.98

易错的情况:

0.6+0.4-0.6+0.4

38×99+99

第四单元小数的意义和性质

1、在进行测量和计算时,往往不能正好得到整数的结果,这时常用(小数)来表示。

分母是10、100、1000……的分数可以用(小数)来表示;

分母是10 的分数可以写成(一位)小数,

分母是100 的分数可以写成(两位)小数,

分母是1000 的分数可以写成(三位)小数……

所以,一位小数表示(十分)之几,

两位小数表示(百分)之几,

三位小数表示(千分)之几……

如:

0.5 表示(十分之五),

0.05 表示(百分之五),

0.25 表示(百分之二十五),

0.005 表示(千分之五),

0.025 表示千分之二十五)。

2、小数点前面的数叫小数的(整数)部分,小数点后面的数叫小数的(小数)部分,

3、小数点后面第一位是(十)分位,十分位的计数单位是十分之一,又可以写作0.1;

小数点后面第二位是(百)分位,百分位的计数单位是百分之一,又可以写作0.01;

小数点后面第三位是(千)分位,千分位的计数单位是千分之一,又可以写作0.001……

如:20.375,十分位上的3,表示3 个(十分之一);百分位上的7,表示7 个(百分之一);千分位上的5,表示5 个(千分之一)。

4、小数每相邻两个计数单位间的进率都是10,(10 个千分之一是1 个百分之一,10 个百分之一是1 个十分之一,10 个十分之一是整数1,或10 个0.001 是1 个0.01 ,10 个0.01 是1 个0.1, 10 个0.1 是整数1……

5、读小数时,整数部分按照整数的读法去读,小数点读作“点”,小数部分要依次读出每一个数字。

如:31.031 读作:三十一点零三一

6、写小数时,整数部分按照整数的写法来写,小数点写在个位的右下角,小数部分要依次写出每一个数位上的数字。

如:一百二十点零零九八

写作:120.0098

7、在小数的末尾添上“0”或去掉“0”,小数的大小不变,这叫小数的性质。

如:

0.2= 0.20 = 0.200 = 0.2000 =……

1.05=1.050 =0.0500 =0.0500=……

1.080=1.08

10.0800=10.08

100.080000= 100.08

8、小数大小的比较:

先比较整数部分,整数部分大,那个小数就大;整数部分相同,就比较小数部分,十分位相同,就比较百分位,百分位也相同,就比较千分位……

9、小数点的移动:

(1)小数点向右:移动一位,相当于把原数乘10,小数就扩大到原数的10 倍;移动两位,相当于把原数乘100,小数就扩大到原数的100倍;移动三位,相当于把原数乘1000,小数就扩大到原数的1000 倍……

(2)小数点向左:移动一位,相当于把原数除以10,小数就缩小到原来的1/10;移

动两位,相当于把原数除以100,小数就缩小到原来的1/100; 移动三位, 相当于把原数除以1000, 小数就缩小到原来的1/1000……

10、不同数量单位的数据之间的改写:

低级单位数÷进率=高级单位数

×

当进率是10、100、1000……时,可以直接利用小数点的移动来换算。

11、求近似数时: 保留整数,就是精确到个位,看十分位上的数来四舍五入;

保留一位小数,就是精确到十分位,看百分位上的数来四舍五入;

保留两位小数,就是精确到百分位,看千分位上的数来四舍五入。

(表示近似数时小数末尾的0 不能去掉)

12、为了读写方便,常常把非整万或整亿的数改写成用“万”或“亿”作单位的数:改写时,只要在万位或亿位的右边,点上小数点,在数的后面加上“万”或“亿”字

第五单元三角形

1、由三条线段围成(每相邻两条线段的端点相连)的图形叫三角形。

2、从三角形的一个顶点到它的对边作一条垂线,顶点和垂足之间的线段叫做三角形的高。这条对边叫做三角形的底。

3、三角形具有稳定性。

4、三角形任意两边的和大于第三边,任意两边的差小于第三边。

5、三角形按角分类,可以分为锐角三角形、直角三角形和钝角三角形这三类;

6、三角形按边分类,可以分为等腰三角形、等边三角形和不等边三角形这三类。

7、三角形的三个内角和是180o。

第六单元小数的加减法

1、笔算小数加、减法的方法:

(1)小数点对齐,也就是相同数位对齐;

(2)从末位算起,算加法时,哪一位数相加满十都要向前一位进1;算减法时,哪一位不够减就要从前一位退1。

(3)得数末尾有0,一般要把0 去掉。

(4)不要忘记了小数点。

2、小数加减混合运算的顺序与整数加减混合运算的顺序相同:

(1)没有括号,按从左往右的顺序依次计算;

(2)有小括号,要先算小括号里面的。

3、整数的运算定律在小数运算中同样适用。在小数四则运算中,恰当地运用加法交换律、结合律及连减的运算性质会使计算更简便。

4. 得数是小数时,(末尾)的0 一般要去掉。

5. 一个整数与一个小数相加减时:

① 先在整数的右边点上小数点;

② 再添上与另一个小数部分同样多个数的0;

③ 然后再按照小数加减法的计算方法计算。

6. 得数是小数时,(末尾)的0 一般要去掉。

7、验算:

加法验算:

①交换加数的位置再加一遍,看结果与原来是否相同;

②用减法,把和减去一个加数,看差是否与另一个加数相同。

减法验算:

① 用加法,把减数与差相加,看结果是否等于被减数;

② 用减法,把被减数减去差,看是否等于减数。

应用整数运算定律进行小数的简便计算:

整数运算定律在小数运算中同样适用。在小数四则运算中,恰当地运用加法(交换律)、(结合律)及减法的运算性质会使计算更简便。

8、简便运算方法:

⑴ 几个小数连加时,如果其中的两个小数的尾数相加能凑整,先把这两个数相加,可使计算简便;

如:0.36+18.09+2.64+4.91

⑵ 一个数连续减去两个小数时,如果这两个小数相加的和能凑整,可以先把两个减数相加,再从被减数里减去这两个减数的和比较简便;

如: 13.2-5.73-4.27

⑶ 一个数减去两个小数的和,当这两个数中的一个数的小数部分与被减数的小数部分

相同时,可以先从被减数里减去这个数,然后再减去另一个数,计算比较简便。

如: 18.63-(4.75+3.63)

⑷ 整数乘法的运算定律在小数乘法中同样适用

如: 3.65×42.6+3.65×57.4

⑸ 在小数运算中,可以利用(添括号)或(去括号)使计算简便:→无论是去括号或添括号

① 括号前面是加号,去掉括号不变号;

如: 6.59-4.86+2.86

②括号前面是减号,去掉括号全变号(加号变减号,减号变加号)。

如: 6.47-(1.5-0.53)

⑹ 在没有括号的同级运算中,交换数据的位置,一定要带着它前面的符号。

如: 4.95-2.67+1.05

第七单元图形的运动二

1、把一个图形沿着某一条直线对折,如果直线两旁的部分能够完全重合,我们就说这

个图形是轴对称图形,这条直线叫做这个图形的对称轴。

2、轴对称的性质:对应点到对称轴的距离都相等。

3、对称轴是一条直线,所以在画对称轴时,要画到图形外面,且要用虚线。

4、正方形的对角线所在的直线是它的对称轴。轴对称图形可以有一条或几条对称轴。

5、画对称轴时,先找到与相反方向距离对称轴相同的对应点,最后连线。

6、长方形、正方形、等腰梯形、等腰三角形、等边三角形、线段、菱形都是轴对称图形。

长方形有2 条对称轴,

正方形有4 条对称轴,

等腰梯形有1 条对称轴,

等腰三角形有一条对称轴,

等边三角形有3 条对称轴,

线段有1 条对称轴,

菱形有2 条对称轴,

圆有无数条对称轴,

半圆有一条,

圆环有无数条,

半圆环有一条。

7、平行四边形不是轴对称图形,没有对称轴。(长方形和正方形除外)

8、梯形不一定是轴对称图形。只有等腰梯形是轴对称图形。

9、古今中外,许多著名的建筑就是对称的。比如:中国的赵州桥,印度泰姬陵,英国塔桥,法国埃菲尔铁塔。

10、平移先找图形点,平移完点连起来,注意数点数要数十字。

11、平移不改变图形的大小、形状,只改变图形的位置。

12、利用平移,可以求出不规则图形的面积。

第八单元平均数和条形统计图

平均数:

1.求平均数的方法:

(1)数据较少:移多补少法.

(2)常用方法:先合后分计算: 总数÷份数=平均数

2.平均数能清楚地表示一组数据的整体水平。

条形统计图:

将两个单式条形统计图合并以后就得到一个复式条形统计图。

复式条形统计图要有图例。

复式条形统计图有横向和纵向两种。

复式条形统计图是用两个单位长度表示一个的数量,根据数量的多少画成长短不同的直条,

怎样画横向复式条形统计图

1.准备尺子,铅笔,橡皮等画图工具。

2.注意写单位,画中坐标和横坐标还有日期名字还有横坐标上的“0”。

3.假如位置有限,例如说0 到10,到20,假如你写到200,位置绝对有限,你可以在0 的上面画波浪线,然后写100(当然其他数也可以,但最标准的还是画闪电线)。

4.例如上图两者要有不同的颜色,假如没有色笔,第一个可以画斜线,第二个可以涂得严严实实。

5.在每个图的下方都要写标题。

复式条形统计图:

【特点】用直条的长短表示数量的多少。【优点】能清楚地看出数量的多少,便于比较两组数据的多少。

后把这些直条按一定的顺序排列起来。从复式条形统计图中很容易看出两者数量的多少。

第九单元数学广角-鸡兔同笼

1、鸡兔同笼属于假设问题,假设的和最后结果相反。

2、“鸡兔同笼”问题的解题方法

假设法:

①假如都是兔

②假如都是鸡

③古人“抬脚法”:

解答思路:

假如每只鸡、每只兔各抬起一半的脚,则每只鸡就变成了“独脚鸡”,每只兔就变成了“双脚兔”。这样,鸡和兔的脚的总数就少了一半。这种思维方法叫化归法。

3、公式:

鸡兔总脚数÷2-鸡兔总数= 兔的只数;

鸡兔总数-兔的只数= 鸡的只数。

因篇幅问题不能全部显示,请点此查看更多更全内容