您的当前位置:首页正文

自适应均衡器的设计

2024-01-19 来源:好走旅游网
自适应均衡器的设计

《信号分析与处理》综合项目设计报告

电子信息工程学院

《DSP技术及应用》课程设计报告

题 目:自适应均衡器的设计 专业班级:通信工程专业10级通信B班 二��一三 年 六 月 十 日 目 录

一、设计目的…………………………………………………………1 1

《信号分析与处理》综合项目设计报告

二、设计要求…………………………………………………………1 三、设计原理及方案…………………………………………………2 四、软件流

程…………………………………………………………3 五、调试分析…………………………………………………………9 六、设计总结………………………………………………………...10 七、参考文献…………………………………………………………10 2

《信号分析与处理》综合项目设计报告 一、设计目的

通过本学期课程的学习,我们主要对数字信号系统的通信原理、传输机制等有了深入的了解。而实践性的课程设计能够起到提高综合运用能力,提高实验技术,启发创造新思想的效果。我们小组此次课程设计是自适应均衡器设计,通过查找资料,我们了解到在一个实际的通信系统中,由于多径传输、信道衰落等影响,在接收端也会产生严重的码间串扰。串扰造成严重影响时,必须对整个系统的传递函数进行校正,使其接近无失真传输条件。为了提高通信系统的性能,一般在接收端采用均衡技术。由于信道具有随机性、时变性,因此我们设计自适应均衡器,使其能够实时地跟踪无线通信信道的时变特性,根据信道响应自动调整滤波器抽头系数。 输入信号

H (w) 均衡器 T (w)输出信号 图1 无码间串扰条件 2 ? i ? 'H?(w?iTS)?Ts|w|?TS公式1

我们决定使用的LMS 算法是目前使用很广泛的自适应均衡算法,同时我们按照查找资料、系统设计、仿真实现、结果优化这一流程进行。不仅使我们进一步巩固了课程知识,也提高了我们分析问题、解决问题的能力。 二、设计要求 1、熟练掌握自适应滤波器的原理和LMS算法的理论知识;

2、学会运用matlab软件,生成并对该信号进二进制序列信号和正弦信号,并模拟一个码间串扰信道,使信号通过码间串扰信道,之后对其进行加噪处理。比较经过均衡器和未经均衡的效果随信噪比的变化。

3、完成以二进制序列信号和正弦信号为输入信号设计自适应均衡器的基础上,实现改变LMS算法的步长进而改变自适应均衡器的抽头系数来观察信号的均方误差随步长的变化。

4、完成对归一化LMS算法的研究,使经过信道的信号通过可以自定义NLMS算法 1

《信号分析与处理》综合项目设计报告

次数的自适应均衡器,观察信号的均方误差的变化曲线。

5、完成声音信号的采集,研究声音信号的时域波形和频域波形,对声音信号分别加高频噪声和通过模拟信道,使处理过的信号通过巴特沃斯滤波器和自适应均衡器,分析均衡器的效果。

6、组员之间相互协助,共同完成系统设计。

7、通过对自适应均衡器的设计,提高对通信原理及数字信号处理课程中所学知识的实际运用能力,以及对matlab软件的操作能力。 二、设计原理及方案 1、原理图 噪声发生器数据发生器x(n)v(n)+信道h(n)+自适应均衡器y(n)LMS延迟e(n)+

图2 系统原理框图 2、原理图说明

上图为系统的原理框架结构,各具体结构模块说明如下。

(1) 信号采集:生成二进制序列和正弦信号,读取一段音乐,实现声音信号的采集。 (2) 信号分析:对信号进行时域分析,同时使其经过码间串扰信道并进行加噪处理, 分析显示加噪后时域波形。

(3) 简单信号处理:使加噪后的信号经过自适应均衡器,并且可以根据LMS算法 的特点,进行步长参数的配置,可以显示均衡后信号的时域波形。同时使用改进的LMS算法,即归一化LMS算法,并自定义算法的运行次数,观察均衡后的效果。 LMS算法的依据是最小均方误差,即理想信号d(n)与滤波器实际输出y(n) 2 《信号分析与处理》综合项目设计报告

之差e(n)的平方值的期望值E{e2(n)}最小,并且根据这个依据来修改权系数Wi(n) 令N阶FIR滤波器的抽头系数为Wi(n),滤波器的输入和输出分别为x(n)和 y(n),则FIR横向滤波器方程可表示为

y(n)??Wi(n)X(n?i) 公式2 i??1N令d(n)代表“所期望的响应”,并定义误差信号

e(n)?d(n)?y(n) 公式3

采用向量形式表示权系数及输入W和x(n),可以将误差信号e(n)写作

e(n)?d(n)?WTX(n)?d(n)?X(n)W 公式4 则误差平方为

e2(n)?d2(n)?2d(n)XT(n)W?WTX(n)XT(n)W 公式5 上式两边取数学期望后,得均方误差

T E{e2( ) } 公式6 n)?}Ed{2n(?)}Ed2n{XT(n)W(?W)}EX2nW{ (根据最速下降法,“下一时刻”权系数向量W(n+1)应该等于“现时刻”权系数向量W(n)加上一个负均方误差梯度-?(n)的比例项,即

W(n+1)=W(n)???(n) 公式7 精确计算梯度?(n)是十分困难的,一种粗略的但是却十分有效的计算?(n)的近似方法是直接取e2(n)作为均方误差E{e2(n)}的估计值,即

?(n)=?[e2(n)]?2e(n)?[e(n)] 公式8 其中

?[e(n)]??[d(n)?W(n)X(n)]??X(n) 公式9 T得到梯度估值

?(n)??2e(n)X(n) 公式10 于是LMS算法为

W(n?1)?W(n)?2?e(n)X(n) 公式11

(4) 语音信号处理:对于语音信号加噪后分别经过巴特沃斯滤波器和自适应均衡 器,观察均衡器的效果。并对语音信号进行部分特效处理。 三、软件流程

Matlab主要面对科学计算、可视化以及交互式程序设计的高科技计算环境。它将数值分析、科学数据可视化以及非线性动态系统的建模和仿真等诸多强大功能集成在一个易于使用的视窗环境中,为众多科学领域提供了一种全面的解决方案。此外,我们设计自适应均衡器是按照软件设计流程进行,使得软件的可操作性明显提高。 具体软件流程如下: 1、理论研究模块: 3

感谢您的阅读,祝您生活愉快。

因篇幅问题不能全部显示,请点此查看更多更全内容