www.elsevier.nl/locate/patrec
Cornerdetectionviatopographicanalysisofvector-potential
BinLuo
aa,b,A.D.J.Crossa,E.R.Hancock
a,*DepartmentofComputerScience,UniversityofYork,YorkYO15DD,UK
bAnhuiUniversity,Anhui,People'sRepublicofChinaReceived22September1998;receivedinrevisedform23December1998
Abstract
Thispaperdescribeshowcornerdetectioncanberealisedusinganewfeaturerepresentationbasedonamagneto-staticanalogy.Theideaistocomputeavector-potentialbyappealingtoananalogyinwhichtheCannyedge-mapisregardedasanelementarycurrentdensityresidingontheimageplane.Inthispaper,wedemonstratethatcornersarelocatedatthesaddle-pointsofthemagnitudeofthevector-potential.Thesepointscorrespondtotheintersectionsofsaddle-ridgeandsaddle-valleystructures,i.e.tojunctionsoftheedgeandsymmetrylines.Wedescribeatemplate-basedmethodforlocatingthesaddle-points.Thisinvolvesperforminganon-minimumsuppressiontestinthedirectionofthevector-potentialandanon-maximumsuppressiontestintheorthogonaldirection.Experimentalresultsusingbothsyntheticandrealimagesaregiven.Weinvestigatetheangleandscalesensitivityofthenewcornerdetectorandcompareitwithanumberofalternativecornerdetectors.Ó1999ElsevierScienceB.V.Allrightsreserved.
Keywords:Cornerdetection;Topographicanalysis;Vector-potential;Saddle-pointdetection
1.Introduction
Cornersareimportantdominantpointsindig-italimages.Inmanycomputervisiontasks,suchasimageregistration,imagematching(Costabileetal.,1985),objectrecognition(LiuandSrinath,1990b;HanandJang,1990)andmotionanalysis(DreschlerandNigel,1992),accuratecornerde-tectionisessential.Broadlyspeaking,therearetwocornerdetectionstrategiesadoptedinthelit-erature.The®rstoftheseisbasedontheanalysisofpre-segmentedcontours,whilethesecondisbasedonthedierentialanalysisoftherawgrey-scaleimage.However,inbothcasesitistherateof
changeofcontouranglethatisusedtocharac-terisecornerfeatures.1.1.Relatedliterature
Inthecaseofboundary-basedcornerdetectionfrompre-segmentedcontourstherearethreepro-cessingsteps.Firstly,theimageispre-segmented.Secondly,boundariesoftheobjectintheimageareextractedandchain-coded.Finally,algorithmsaredevelopedforidentifyingcornersinthechain-codes.Acommontechniqueistosearchforcor-nersattheintersectionpointsorjunctionpointsbetweenstraightlinesegments(Xieetal.,1993).Infact,theuseofchain-codestoprovideadigitalcharacterisationofcornersaboundinthelitera-ture(FreemanandDavis,1977;BeusandTiu,1987;KoplowitzandPlante,1995;Rosenfeldand
Correspondingauthor.Tel.:+441904432767;fax:+441904432767;e-mail:erh@minster.cs.york.ac.uk
*0167-8655/99/$±seefrontmatterÓ1999ElsevierScienceB.V.Allrightsreserved.PII:S0167-8655(99)00028-8
636B.Luoetal./PatternRecognitionLetters20(1999)635±650
Johmston,good(1990a).review1973;weakHowever,isRosenfeldprovidedandWeszka,1975).AitmustbybeLiustressedandSrinathdetectionlinkinthecontour-basedmethodofthatcornertheageistheprioravailabilityofareliableim-dividedGrey-scalesegmentation.
detectorsintotwocornergroups.detectionTemplate-basedalgorithmscancornerbe1990)plateexploit(Rangarajantheetal.,1989;Mehrotraetal.,window.ofspeci®corientationsimilaritybetweenforeachagiventem-aresive.used,Becausethetechniquemultipleorientationimagetemplatessub-andGiraudon,Rosenfeld,Gradient-basedcorneriscomputationallydetectors(Kitchenexpen-1995;1993;1982;Noble,Singh,1988;1990;WangDericheandandhand,HarristhatThepassesrelyonandStephens,1988),ontheBrady,otherthroughmeasuringathecurvatureofanedgebothstrengthofthecornergivenimageresponseneighbourhood.dependsonedge-direction.theedge-strengthtechniquesGradient-basedandtherateofchangeoftheiraremorelikelytorespondcornertonoisedetectionthanformcontour-basedcounterparts,andoftencornerFocusingquitepoorly.
per-inadetection,moreWangdetailandBradyon(1995)gradient-basedthecurvature-based``totalstrengthofcornerscornerdetectorwhichmeasuresdescribetionalcurvature''.Thetotalintermscurvatureoftheisso-calledtensitytothesecondderivativeoftheimagepropor-in-inverselyalongmethodproportionaltheedge-tangenttotheedge-strength.direction,andisanvidingexplicitoersmeasuretheattractivefeatureofexploitingTheever,falseoneadegreeofitsweaknessesoffalseofcurvaturecorneraswellaspro-isthatsuppression.itHow-present.responseswhensigni®cantimagecannotnoisecontrolisStephens,Thedetector1988)popularisanotherPlesseycurvature-basedoperator(Harrisandthewhichisbasedonlyon®rstderivativescornerofwithimage`L'-junctionsrespectintensity.tonoise,Althoughitisquiterobusttionorright-angleitcancorners.onlyperformThewelloncornerofotherjunctiontypesispoor.Thelocalisa-SUSANotherAdegreehand,detectorofperforms(SmithrobustnessalocalandBrady,1997),ontheisachievedtemplatebycomparison.computing
templatecentredexaminesoncorrelationwhichthethestatisticsforacircularmasknumbercornercandidates.ofpixelsInparticular,itThefornumberhaveaofsimilaragreementbrightnesswithincountsistotakenthethetemplate.maskasavotetakenthemethodtocornerhypothesis.Highvotingpixelsaresiontestalsohavetorejectperformsasigni®cantfalse-positives.anon-maximumcornerstrength.suppres-The1.2.Paperoutline
detectionOuraiminthispaperistopresentanewcornerbasedgradient-basedandmethodgradient-basedwhichconcepts.exploitsbothWeappealtemplate-toaalreadyimagerepresentationwhichhaspographicbeenfeaturesrepresentationshowntoprovideforaconvenientto-representation(CrossandHancock,edge1997,and1998).symmetryThemap,tensity.i.e.computeBytherotatingdirectionalcommencesthegradientfromtheCannyedge-edge-gradientofthevectorsimagein-vectorsprocessarea®eldofedge-tangents.Thetangentweinginwhichsmoothedthevectorsbyperformingareanaveragingpointtogestedinthequestion.inverseofThistheirweightingdistanceweightedfunctionfromtheaccord-isimagesug-thebymagneto-statics.Asaresult,werefertoAccordingresultingthetogradientthisrepresentation,®eldasthevector-potential.localtionalmagnitudeDirectionallyconsistencyvector-®eldwhichexhibitmaximadirec-ofareconsistent(i.e.ridges)localcorrespondminima(i.e.toedges.topographicsymmetrylines.Inthispaper,weextendravines)thissaddle-structurespictureridgeswheretoincludedirectionallycorners.TheseconsistentareanalysisItisandimportantravinesintersect.
tocontrastour(HaralickwithonetHaralick'stopographicprimalmethodsketchof(i.e.thetopographical.,1983).structureWhereasofHaralickfocusestopographyascalarimagerepresentation),grey-scaleweanalysefeaturesthemainrectionaladvantageofagraphicconsistencyisvector-®eldthatinwerepresentation.Thethearelocalisationabletoexploitofdi-robustnessstructuregraphicrepresentationoffeatureand,detection.hence,improvetopo-theinhand,theWithmainthepractical
topo-B.Luoetal./PatternRecognitionLetters20(1999)635±650637
problemsaddle-points.thatconfrontsusisthelocalisationoftheridgesidentifyingandravinesThisismoredicultthanlocalisingfeatures.exploitInpointthecasefeaturessinceweofridgesratherareconcernedwithandravines,thancontourdirectionality.constraintsoncompatiblecontinuitywecanorconstraintslocationsareInmorethesubtle,caseofsaddle-pointsthejunctionswhichareconsistentsincewithweareseekingvalleys.
betweensaddle-ridgesandbeingsaddle-thegraphicBasedoninplate-basedthevector-potential.teststhisforobservation,theconsistentwedeveloptopo-Thisiseectivelysaddle-structureatem-valleypotentialstructuremethod.orthogonalandconsistentintheWedirectionsearchforconsistentridgestructureofthevector-tionaldirection.Inotherwords,theindirec-thetureravineastemplatetheintersectioncharacterisesoflocalsaddle-struc-computation(i.e.symmetry)structures.ridge(i.e.Moreover,edge)and®xedtial.tobeissimpli®edsincethetemplateisofintensity.directionalInthisinwaythedirectionofthevector-poten-secondweavoidderivativesexplicitofcomputationthisAswewilldemonstrateexperimentally,theimagesensitivity.
oersadvantagesintermsofimprovednoisetionTheoutlineofthispaperisasfollows.InSec-tion.2,representationSectionwereview3theintroducesvector-potentialrepresenta-Inoffeaturesinthethevector-potential.topographicdicultiesSection4,Real-worldassociatedweconfrontsomeofthepracticalinandSectionexperimentalwithexamplessaddle-localisation.arepresentednally,comparison5.Questionsareaddressedofalgorithminsensitivityidenti®esSectionavenues7providesforfuturesomeinvestigation.conclusionsSection6.andFi-2.Imagerepresentationusingvector-potentialtationInthissection,wereviewthefeature-represen-(1997).recentlyedge-mapThestartingreportedpointbyCrossandHancockmenceby(Canny,convolving1986).istheAccordingly,tocomputetherawimagesweCannywithcom-a
Gaussianfollowingkernelform:
ofwidthr.ThekerneltakestheqrxYy
1
!2pr2expÀx2y2
2r2X1Withmapistherecovered®lteredimagebycomputinginhand,thethegradientCannyedge-ErqrÃsX
2
Inoforderauxiliarytheedge-map,tocomputeavector-®eldrepresentation
natezdimensionwetowilltheneedoriginaltointroducexanco-ordinatesystemoftheplaneimage.Inthis±augmentedyco-ordi-mapwords,areinputimagethecon®nedsystem,edge-vectortothethecomponentsattheimagepointplane.oftheedge-xYyY0InonothertheHplaneisgivenby
oqrÃsxYyIoxExYyY0fdoqrÃsxYyg
oyeX
3
0
Forentmorewillanidealbedirectedstep-edge,alongthetheresultingboundaryimagenormal.gradi-AvectorsconvenientAccordingly,which¯owrepresentationalongtheisobjecttheedge-tangentboundary.theywere-directtheedge-vectorssothatcomputingaretangentialthethecross-producttotheoriginalwithplanartheshapebyatde®nedtheimagepointplanetobe
xYyzY0on0Y0theY1T
input.Theimagetangentnormalplanevectorto
isjxYyY0zrqrÃsxYyX
4
Totangentbemorevectorexplicit,isgivenintermsby
ofitscomponentstheHÀoqrÃsxYyIoyjxYyY0fdoqrÃsxYyg
oxeX5
0
Inunderlyingourpreviouslyreportedwork,theacterisegraphicedgestheimageandsymmetryrepresentationwaskeytochar-ideacorrespondedstructurestorstolocationsintheedge-tangentlinesusing®eld.Edgestopo-boundariesre-enforcewherethetangentvec-tangent®eld.areone-another.Inotherwords,theSymmetryidenti®edpointsaslocalaremaximathoseatofwhich
the638B.Luoetal./PatternRecognitionLetters20(1999)635±650
thereposedisoftangentcancellationvectors.betweenAxesofsymmetrydiametricallyarelinesop-oflocallocal®nedetail,minimumintensityintheridgestangentorravines®eld.AtgivetheriseleveltoareUnfortunately,symmetryaxes.
sincetherawgradientsmoothinglikelytothethebetangentnoisywe®eldmustsothatdevelopwecanameansvectorsperformofgoal,requiredtopographicanalysis.Torealisethismeanswely,ofappealsmoothingtomagneto-staticsthetangent®eld.toAccording-developabywementaryregardingcomputetheanedge-tangentsanalogueoftheasvector-potentialaintegratingcurrents.tributingovervolumeThevector®eldofele-andpotentialisfoundbyotherroriginalxYwords,currentsyYimagezT
intheaccordingvector-potentialtoweightinginverseatdistance.thecon-thepoint
Inplanetheaugmentedisembeddedspaceis
inwhichthe
AxYyYzljxHYyHYzHHjrÀrHjdHY6whereconstantrHxHYcontributingwhichyHweYzHTsetandequallistotheunity.permeability
Sincethedistributedintegralonlyedge-tangentvectors(orcurrents)areplane.reducestoonantheareaimageintegralplane,overthethevolumepotentialAsarearesult,asfollows:
thecomponentsofthevector-imageAxYyHYz
fÀoqI
rÃsxHYyHoyHp1HHxÀxH2yÀyH2z2
dxdygfffoqdrÃsxHYyHoxHp1xÀxH2yÀyH2
z2dxHdyHgggX0
e7
Thefurtherstructureponentscomment.ofInthethevector-potential®rstinstance,thedeservescom-ofmovetheauxiliaryarecon®nedtothex±yplaneforallvaluesauxiliaryawayfromco-ordinatetheimageplanez.However,theroleaswecurrentsoriginaloverdimensionanincreasinglyistoaverageofthislargethegeneratingthevolumeauxiliaryimageplane.Inotherwords,areatheroleoftheofintegrationz-dimensionoftheisedge-tangenttoallowusvectors.toperformBysamplingplanesimagetion.plane,atincreasingthevector-potentialforvariousx±yweinducesamplingascale-spaceheightzabovethecoarseWeexploitthispropertytoproducerepresenta-a®ne-to-vector-potentialimagerepresentationaswesampletheaboveatincreasingsamplingheightsoperatorsInorderthephysicaltodevelopimagetheplane.
appropriatedierentialvector-potentialforfeatureanalogywehavecharacterisationtakenthemagneto-staticfromthegeometryonecordingthetoofstepfurtherandhaveappealedtothemagneto-statics,theassociatedthemagneticmagnetic®eld.®eldAc-isstresscurltractablethatofthevector-potential.Itisimportantto®eldthanbecausethevector-potential,itislesscomputationallythemagnetictation.isanmagneticauxiliaryTheneverroleuseddirectlyinourimagerepresen-representation.ofthemagneticThe®eldistoprovideential®eldallowsustounderstandgeometrytheofdier-thetosymmetryourstructurerepresentationofthevector-potential.oftheimageAccordingvector-potential.linesfollowimageInthelocalminimastructure,oftheedgepointswhereotherthereiswords,strongtheycancellationconnectplacedtangentcontoursobjectvectorsboundaries.associatedBywithcontrast,symmetricallyedge-potential.followedge-linesAccordingthelocaltomaximaofthevector-directionalconnectpointsourwhererepresentation,thereisstrongthevectors.locationsSymmetryre-enforcementtowherelinescanbetweenbeinterpretededge-tangentaswherethesamplingtheimagemagneticplane.®eldEdgesisperpendicularsampling®eldofplane.linesaretangentialtoarethelocationsrelevantsymmetrythedierentialWhenstructureviewedoffromthetheperspectiveofzthecurllinesinarelocationswherevector-potential,thecomponenttherAxYyYzthe0,imageedgesplanearelocationsvanishes,i.e.ishes,transversei.e.rÁzcomponentAxYyYzofthedivergencewherevan-daryCorners,orpointsoflocally0.
maximumboun-wherecurvature,withthereisacanlocalbesymmetryviewedasedge-locationsviewedarapidchangeinboundarydirection.axisassociatedWhensentation,fromcornerstheperspectivethereforeofourcorrespondimagerepre-to
B.Luoetal./PatternRecognitionLetters20(1999)635±650639
locationsconditionswheretopographicareboththeedgeandsymmetryboundaryviewpoint,simultaneouslycornerssatis®ed.arelocatedFromwhereawords,linesandsymmetrylinesmeet.Inothertherevector-potentialiswealocalareinterestedmaximuminlocatingpointswhereimumcornerintheorthogonalinonedirectionofthemagnitudeandalocalofmin-thedetection.
detectioncanbetreateddirection.asAssaddle-pointaresult,3.Topographicrepresentation
saddle-pointsInSection2,weestablishedtential.scalarquantityWethereforeinthemagnitudefocusontheofthatanalysisthecornersvector-po-areofthegxYyzjAxYyYzjX
8
ThecanbetopographicstructureofthecharacterisedusingtheHessianvector-potentialmatrix
Hg
ggxxgxy
xygyyY9wherethesecondderivativesaregivenbygxx
o2gxYyo2zYgo2xxy
gxYyoxo2yzYgyyo2gxYyo2yzX
beTheeigen-structureoftheHessiantwousedminimumeigen-valuestogaugetheofcurvatureHaretheofthematrixcanmaximumsurface.Theandtorsdirections.ofHcurvatures.isTheareknownTheorthogonaleigen-vec-mean-curvatureastheprincipal(Kcurvaturecurvatures.foundbyaveragingequalFinally,thethe)ofthesurfaceGaussianmaximumcurvatureandminimum(Hresult,
totheproductofthetwoeigen-values.As)isargxxgyyÀg2
xy
10
andu
gxxgyy
2X11
TableCurvature1
classesClassSymbolKHRegion-typeDomeRidge
DÀEllipticSaddle-ridgeRÀ+Plane
SRÀParabolicSaddle-pointPÀ00HyperbolicCupS0ÀHyperbolicValley
C0+HyperbolicSaddle-valley
V+SV
++
0EllipticÀ
ParabolicHyperbolic
curvaturesThesignsandzerosofthemeanandGaussiansurfacegraphicgeometrycanbeusedtocategorisethelocalTablesaddle-structures1.classes.intoanumberofdistincttopo-InthisThesepaper,classesaresummarisedinfeaturesterisedinthetable.whichweareinterestedintheThesearelabelledashyperbolicarebeinginterestedbytheconditioninpointsr`features0.Inparticular,arecharac-wei.e.dle-valleys.inthetheintersectionsintersectionsofthatofedgeareconsistentwithsaddle-ridgesandsymmetrylines,tionsisThejointconditionfortheandintersec-sad-u0r`0X
12
Bysaddle-ridges,searchingofweforovercometheintersectionsomeofconsistentrconstraints`localising0.Thiscansaddle-points,forwhichoftheuproblems0andfeature.andInfromprovedicultsincetherearenoparticular,thedirectionalityweofthedesiredtemplatesrealisesymmetrylinestothesearchcornerandedge-lines.
forlocalisationmitigatethisdicultythejunctionsprocessbetweenusing4.Implementation
implementationInthissection,theseofwedescribetwoaspectsofthetor-potentialisthemeansourbywhichcornerwedetector.computeThethe®rstvec-ofcomplexityrealisedusingofandfasttheFouriermethod.theresultingtransforms.ThecomputationcomputationalThesecond
is640B.Luoetal./PatternRecognitionLetters20(1999)635±650
implementationaldetailconcernsthepracticalmeansbywhichwelocatesaddle-structures.4.1.Computingthevector-potential
Keytoourimplementationisthefactthatthevolumeintegralsappearinginthede®nitionofthevector-potential(Eq.(7))canbereplacedbyspa-tial-convolutionswithasamplingheight-depen-dent®lter.Speci®cally,weinvoketheFourierdualitybetweenconvolutioninthespatialdomainandmultiplicationinthefrequencydomain.Inthisway,thediscretisedversionofthevector-potentialcanbecomputedusingjustthree2DFourier
Fig.1.Topographicrepresentationandcornerdetection.
B.Luoetal./PatternRecognitionLetters20(1999)635±650641
transformsandapairoffrequency-domaincon-volutions.
Ourbasicgoalistocomputethevector-poten-tialatagivensamplingheightabovetheimageplane.The2Dintegralsappearinginthede®nitionofthevector-potentialcanbediscretisedtogivethefollowingxandycomponents:
exxYyYzÀ
oqrÃsxHYyH
xH
yH
oyH13
1
ÂqY
xÀxH2yÀyH2z2
Fig.2.Topographicrepresentationatdierentsamplingheights.
642B.Luoetal./PatternRecognitionLetters20(1999)635±650
eyxYyYz
oqrÃsxHYyH
xH
yH
oxH14
1
ÂqX
xÀxH2yÀyH2z2
Thedoublesummationcanbereplacedbyaconvolutionwithacomposite®lter.Forinstance,thex-componentofthevector-potentialisasfollows:
exxYyYzÀxrYzÃsxYyX
15
Fig.3.Topographicrepresentationatdierentsamplingheights.
B.Luoetal./PatternRecognitionLetters20(1999)635±650643
Weexploitthecommutativepropertiesofconvo-lutiontocomputethecomposite®lterxrYz.The®lterisfoundbyconvolvingtheappropriatedi-rectionalderivativeoftheGaussianwiththein-verseEuclideandistanceoperator,i.e.,xrYzxYy
oqrxHYyH
oyHxHyH
1
ÂqX
xÀxH2yÀyH2z2
16composite®ltersinturn,i.e.wecomputeFexrYzandFeyrYz.Finally,thetwospa-tialcomponentsofthevector-potentialareob-tainedbyinverseFouriertransformationofthetwoweightedfrequencydistributions.
SincethecomputationisimplementedusingfastFouriertransforms,thetimecomplexityisof
2
theorderxlnxwherexisthelinearimagedimension.Infact,wehaveimplementedtheal-gorithmonanSGIIndyworkstationwhereitiscapableofprocessing256´256pixelimagesattherateof25framespersecond.4.2.Localisingsaddles
BasedontheresultspresentedinSection3,wemakethefollowingobservationsconcerningthetopographicstructureofthevector-potentialintheproximityofcorners:
·Thereisalocalminimaofthemagnitudeofthevector-potentialinthedirectionofthevector-potential.
·Thereisalocalmaximaofthemagnitudeofthevector-potentialintheorthogonaldirection.·Atthelocationsofcorners,themagnitudeofvector-potentialalongboththecontouranditsorthogonaldirectionchangesrapidly.
·Atthelocationsofcorners,themagnitudeoftheGaussiancurvatureissigni®cant.
Basedonthe®rsttwoobservations,wesearchforsaddle-pointsthatareconsistentwhenviewed
Forpracticalreasons,wewouldliketorealisethecomputationofthecomponentsofthevector-potentialusingfastFouriertransforms.OurbasicstrategyistoexploittheFourierdualitybetweenconvolutioninthespatial-domainandmultiplica-tioninthefrequencydomain.Schematically,weutilisetheidentity
exFÀ1FxrYzÂFs
17
tocomputeeachofthecomponentsofthevector-potentialinturn.Inthiswaythevector-potentialcanbeobtainedusingthreeseparateFouriertransformoperations.The®rstoftheseinvolvescomputingtheFouriertransformoftherawimageFs.TwoseparateweightedspatialfrequencydistributionsarethenconstructedbymultiplyingthecomponentsoftheimageFouriertransformwiththeFourierrepresentationforeachofthe
Fig.4.Cornerdetectionresults.
644B.Luoetal./PatternRecognitionLetters20(1999)635±650
froma®nitesupportneighbourhood.Inpracticewelocaliseconsistenttopographicstructureusingasimpli®edformoftemplateconvolution.Ourtemplatetestsfororthogonalmaximaandminimausingdirectionalsecondderivativesandsubse-quentnon-maximumsuppressionandnon-mini-mumsuppressiontests.Thesaddle-pointsarecornercandidates.Becauseofimagenoiseand
Fig.5.Cornerdetectionatdierentsamplingheights.
B.Luoetal./PatternRecognitionLetters20(1999)635±650645
otherimperfections,thepointsdetectedbyoursaddle-templatearenotalwaysthelocationsoftruecornersintheimage.Toovercomethisproblemwecanappealtothedirectionalconsis-tencyofthederivativesofthevector-potentialtore®nethecornerestimates.Theaimistosearchfororthogonalridgeandravinestructures.Tomeetthisgoal,weuseddirectionalsecondderivativeoperatorstocomputeacorner``strength''mea-sure.Thismeasurecapturesthedirectionalvaria-tionsofthevector-potentialalongthecontourdirectionandintheorthogonaldirection.
Tobemoreformal,supposethatxYyYz2~rjjjejisthesecondderivativeofthemagnitudeofthevector-potentialinthedirectionofthevector-potential.Themagnitudeofthisquantitywilltakeonamaximumvaluewhenthereisalocalmini-mumorvalleystructureinthemagnitudeofthevector-potential.FurthersupposethatxYyYz
~r2cjejisthesecondderivativeofthemagnitudeofthevector-potentialinthedirectionperpendiculartothelocalorientationofthevector-®eld.Themagnitudeofthisquantityexhibitsalocalmaximawhenthereisaridgestructureorlocalmaximainthevector-potential.Usingthesetwooperators,wesearchforcornersbycomputingthefollowingcornerstrengthmeasurewhichgaugesconsistentsaddle-structure:
gjxYyYzjÂjxYyYzjX
18
ThemeasureisanapproximationtotheGaussiancurvature.Itislargeinvaluewhenthereareor-thogonalridgesandvalleysinthemagnitudeofthevector-potential.Cornersareselectedby
thresholdingthisaggregatemeasureofcornerstrength.5.Experiments
Inthissection,weprovidesomeexperimentalevaluationofthecornerdetectionalgorithm.Theexperimentalworkisdividedintotwoparts.Wecommencewithsomeexamplesonbinaryimagerytoillustratesomeofthepropertiesoftherepre-sentation.Nextwefurnishreal-worldexamples.Toillustratethepropertiesofourvector-potentialrepresentationandcornerdetectionalgorithm,weuseasimplebinaryimageof``E''.Fig.1(a)isthemagnitudeofthevector-potentialforthebinaryimage,Fig.1(b)isthedirectionofthevector-potential.Fig.1(c)showsthedetectedcorners.Forthissimpleimage,theresultsareallcorrect.Themagnitudeofthevector-potentialisdisplayedasafunctionofthesamplingheightzinFig.1(a)toemphasisethetopographicstructure.Herethesaddle-structureassociatedwiththecornersisclear.Theridgeandravinestructureoftheedgeandsymmetrylinesisalsoevident.InFig.1(b)wedisplaythevectorialrepresentationofAxYyY0.Themainfeaturetonotefromthis®gureisthatthedirectionofthevector-potentialchangesrapidlyatthecornerlocations.
Asexplainedearlier,wecanendowourimagerepresentationwithascale-spacedimensionbysamplingthevector-potentialatincreasingsam-plingheightsabovetheimageplane.InFigs.2and3,weprovidesomequalitativeexamplesofthis
Fig.6.Cog-wheeltestimages.
646B.Luoetal./PatternRecognitionLetters20(1999)635±650
Fig.7.Comparisonfordierentsamplingheights.
scale-spacesampling.Ineachcasetheleft-hand®gureisanelevationmapshowingthemagnitudeofthevector-potentialwhiletheright-hand®gureisthevector-®eld.Themainfeaturetonotefromtheseexamplesisthatasthescaleorsamplingheightisincreased,sothesaddle-structuresbe-comeshallower.
Wenowturnourattentiontoreal-worldscenes.Toprovidesomecomparison,wehaveprovidedsomeexperimentationwiththeSUSANcornerdetector(SmithandBrady,1997).Fig.4(a)istheoriginalINRIAoceimage.InFig.4(b)weshowtheresultofapplyingthealgorithmreportedinthispaper,whileFig.4(c)showstheresultofap-
Fig.8.Saddle-structuresfordierentopeningangles.
B.Luoetal./PatternRecognitionLetters20(1999)635±650647
plyingobtainedtheandsometherewithSUSANarefewerouralgorithmcornerdetector.Theresultsfalsepositives.aregenerallyTherecleaner,tectedinterestingmeetingcorners.qualitativedierencesinarethealsode-verticaloftheline-likeForinstancehorizontalinouralgorithm,thejunctions.barsofthewindowaredetectedbarsandthickerareInthecaseofSUSAN,doubleascornerssingleperceptuallyreturned.forintuitiveTheresultandofmayourprovealgorithmmoreisusefulmorespaceFinally,higherlevelwematchingproblems.
scene.detectionprovideatFig.5showsofthecornerssomeexamplesofthescale-resultsinoftheINRIAocecolumnanumberofdierentsamplingcornerheights.detectionTheleftvector-potential,ofthe®guredetectedwhileshowstheright-columnthemagnitudeshowsofthetheimage.cornerssuperimposedontheoriginaltoAswemovefromthetoprowofthe®gurevector-potentialthebottomrow,increases,main.thensoincreases.thesamplingheightzoftheonlytheAsdominantthesamplingcornersheightcornersHowever,heights.
persistoverthemajoritythefullofsettheofsigni®cantre-sampling6.Performanceanalysis
measuringOur®naltectortiveandcomparingthepiecenoiseofexperimentalsensitivityworkisaimedatitwithsomeofourcornerde-sectioncornerdetectorsreviewedintheofintroductorythealterna-in(Smiththiscomparisonofthispaper.areThespeci®calgorithmsusednerandBrady,1997),theSUSANWangandcornerBrady'sdetectorPlesseydetector1988).corner(WangandBrady,1995)andcor-theatedTorealisedetectorthiscomparison,(HarrisweandStephens,andsyntheticimagesofcog-wheelshave(seeFig.gener-6)proportion.haveaddedthereducecircumferenceByincreasingsalt-and-pepperofthecog,thewenumbernoisewithknowncansystematicallyofspikesonthetictheonnumber®guretheopeningangleofthecorners.Thesyn-ofprovidestargetcornersground-truthisdatainwhichnertwodetector.aspectsTheof®rstthenoiseofthesesensitivityknown.isthescale-depen-
ofWeourfocuscor-danceistives.
theerroroftheratecornerfordetectionfalsepositivesprocess.andThefalsesecondnega-accuracyWecommenceourevaluationbymeasuringthefunctioncornerofofsamplingthecornerheightdetection(i.e.spatialprocessscale)asacorrectlyopeningplingdetectedangle.cornersFig.7asshowsthefractionandofopeningheightz.Thedierentcurvesafunctionarefordierentofsam-drawndegradesfromangles.thisTheplotmainisthatconclusionthatcanbealsowithansmallindicationwithincreasingopeningthatsamplingourcornerheight.detectorThereisanglewecorners.
encounterdicultiesFig.9.Comparisonofnoisesensitivity.
648B.Luoetal./PatternRecognitionLetters20(1999)635±650
Inordertounderstandinaqualitativewaytheanglesystematicsinvolvedincornerdetection,wehavegeneratedaseriesofsyntheticexamples.Theresultingplotsofthevector-potentialmagnitudeareshowninFig.8.Astheangleincreases,sothedepthofthesaddledecreases.Atsmallopeningangles,thewidthofthesaddlebecomesverynar-rowandhencediculttolocalise.
Fig.10.Noisesensitivityforvariousopeningangles.
B.Luoetal./PatternRecognitionLetters20(1999)635±650649
provideThesecondcornersomeaspectcomparisonofoursensitivitystudyistonoise.bothThedetectorsplotsunderconditionswiththeofalternativecontrolledcornerstruepositives,inFig.i.e.9theshowtheprobabilityofabilitythatarecorrectlydetected,fractionandofthegenuineprob-tectedofprobabilitiescornersfalsepositives,whicharei.e.thefractionofde-arefractionplottedoftruepositivesfalseandfalsealarms.positivesThecurvelongistheofaddedasafunctionresultofnoise.theproposedInofeachthecase,probabilityoralgorithm,thesolidthetector,dashedcornerthePlesseydetectordashedcurveisfortheSUSANcornerde-andcurvetheisdottedforWanglineandBrady'swecornerdetector.FromtheplotofisFig.for9(a),thegorithmcandrawinconsistentlytheconclusionoutperformsthattheproposedal-positivesthesensethatithasahigherprobabilitythealternativesofmoreofnoiseforissmallportionsofaddednoise.WhentrueWangourmethodaddedisalmosttotheidenticalimage,theperformanceOurandBrady,andthePlesseycornerwiththatdetectors.oftheofitsmethodprobabilityalwaysofoutperformstruepositives.
SUSANintermsconclusiveTheresultstector.supportshownforinourFig.9(b)providemorepositivesHereweseethattheproposedprobabilitycorneroffalsede-signi®cantlyforourcornerlowerproposedthanthatmethodforisconsistentlynoiseslightlylevelsdetectors.whereThethePlesseyonlyexceptionthecornerdetectoroccursalternativeatoerslowtheNext,betterweaimperformance.
andcornerdetectorstocomparefordierenttheperformanceopeninganglesofopeningdierent90anglesamplingof30°heights.WechooseasmallFig.°andmeasured10,wealargedrawopening,amediumopeningangleoftheconclusionangleof120°.Fromtives,intermsofthefractionofthat,truewhenposi-thatopeningofourthemethodotherperformscornerdetectorsalittleworsethanmediumangles,alittlebetterthantheforotherssmallatthanWhentheopeningalternativesangles,atandlargesigni®cantlyopeningangles.betterpositives,gaugedtivesatbothourmethodintermsofthefractionoffalsesmallopeningisbetteranglesthantheandalterna-large
openingworseopeningthanangles.However,itperformsalittleangle.thePlesseycornerdetectoratmedium7.Conclusions
tectionInthispaper,wehavepresentedacorneranalysismethodthatisbasedonthetopographicde-tion.saddle-pointsAccordingofavector-potentialtoourimagerepresenta-leysmethodintersect.wheresaddle-ridgesrepresentation,andcornerssaddle-val-areSUSANoersperformanceExperimentaladvantagesresultsrevealoverthenermostdetectorcornerdetector,WangandBrady'scor-thefalsepositives.
strikingandofthesethePlesseyistooercornerbetterdetector.controloverThepresentedThereareanumberofwaysinwhichtheclearlyinthispapercouldbedeveloped.ideasWescale-space.havethatandofAsadaInathismeansrespect,ofcomputingourworkaiscurvaturesimilartolaterepresentationthisMackworthandworkby(1992).BradyinvestigatingOur(1986)nextandstepMokhtarianistoemu-recognition.
canbeusedforshapehowthematchingnewcornerandReferences
Asada,TransactionsH.,Brady,onM.,Pattern1986.Thecurvatureprimalsketch.IEEEBeus,8(1),AnalysisandMachineIntelligencealgorithmH.L.,2±14.
Tiu,basedS.S.H.,on1987.AnimprovedcornerdetectionCanny,ognitionchain-codeplane-curves.PatternRec-tion.J.F.,20(20),291±296.
Costabile,IntelligenceIEEE1986.TransactionsAcomputationalapproachtoedgedetec-8(6),679±698.
onPatternAnalysisandMachineshapes:M.F.,Guerra,C.,Pieroni,G.,1985.MatchingCross,Vision,GraphicsAcasestudyintimevaryingimages.ComputerfeatureA.D.J.,Computeranalysis.Hancock,andIn:IEEEE.R.,ImageProcessing29,296±310.
Computer1997.Scale-spacevector®eldforPuertoVisionandPatternRecognition,SocietyConferenceSanonCross,pp.Rica.IEEEComputerSociety,SilverSpring,Juan,MD,symmetryA.D.J.,738±743.
Hancock,E.R.,1998.Scale-spacevector®eldappear.
detection.ImageandVisionComputing11,forto650B.Luoetal./PatternRecognitionLetters20(1999)635±650
Deriche,forcornerR.,Giraudon,andG.,1993.Acomputationalapproach
Dreschler,Computervertexdetection.InternationalJournaloftrajectoryL.,VisionNigel,10,101±124.
framesequenceofamovingH.,1992.ofastreetcarscene.derivedVolumetricmodeland3DIn:fromProceedingsmonocularofTV-Freeman,pp.692±697.
IJCAIchainH.,codeDavis,curves.L.S.,IEEE1977.TransactionsAcorner®ndingonComputersalgorithmfor
26,Han,297±303.
pointsM.H.,forJang,theD.,recognition1990.TheuseofmaximumcurvatureHaralick,PatternR.,Recognitionofpartiallyoccludedobjects.Watson,L.,23,21±33.
Harris,primalLaey,T.,1983.ThetopographicKitchen,detector.C.G.,sketch.IJRR2,50±72.
L.,In:Stephens,Rosenfeld,4thAlveyM.,1988.Acombinedcornerandedge
A.,Vision1982.Conference,Gray-levelcornerpp.147±151.detection.
Koplowitz,PatternRecognitionJ.,Plante,S.,Letters1995.1,Corner95±102.
detectionLiu,codedLiu,code.H.C.,curves.PatternSrinath,PatternRecognition28(6),843±852.
forchain-RecognitionM.D.,1990a.23Corner(1±2),51±68.
detectionfromchain-contourH.C.,Srinath,actionsmatchingM.D.,indistance1990b.Partialclassi®cationusing
1072±1079.
onPatternAnalysisandtransformation.MachineIntelligenceIEEETrans-12,Mehrotra,Mokhtarian,detection.R.,scaleF.,PatternNichani,Mackworth,RecognitionS.,Ranganathan,N.,1990.CornerA.K.,231992.(11),1223±1233.
Atheoryofmulti-curves.curvature-basedIEEETransactionsshapeonrepresentationPatternforplanarNoble,chineRangarajan,J.A.,Intelligence1988.Finding14(8),789±805.
AnalysisandMa-detection.K.,Shah,M.,Brackle,corners.D.V.,IVC6(2),121±128.
Rosenfeld,48,230±245.
ComputerVisionGraphicsand1989.ImageOptimalProcessingcornerRosenfeld,curves.IEEEA.,Johmston,angleA.,Weszka,TransactionsE.,1973.AngledetectionondigitalJ.S.,1975.onComputersAnimproved22,875±878.methodSingh,Computersdetection24,ondigitalcurves.IEEETransactionsonofandA.,1990.Gray940±941.
levelcornerdetection±AgeneralizationSmith,GraphicsarobustlevelS.,Brady,andImagereal-timeJ.,1997.Processingimplementation.SUSAN51±A(1),ComputerVisionnew54±69.
approachtoWang,Visionimage23(1),processing.InternationalJournalofComputerlowXie,algorithmH.,Brady,45±78.
formotionM.,1995.Real-timecornerdetectioncostX.,Sudhakar,R.,Zhuang,estimation.H.,1993.IVC13(9),695±703.1235±1243.
minimizationapproach.PatternCornerRecognitiondetection26by(8),a
因篇幅问题不能全部显示,请点此查看更多更全内容