您的当前位置:首页正文

广东省东莞市樟木头中学九年级数学上册《圆周角》教案 新人教版

2024-03-30 来源:好走旅游网
word

《圆周角》教案

三维目标:

(1)理解圆周角的概念,掌握圆周角的两个特征、定理的内容及简单应用; (2)继续培养学生观察、分析、想象、归纳和逻辑推理的能力;

(3)渗透由“特殊到一般”,由“一般到特殊”的数学思想方法. (4).提高学生的环保意识

(一)圆周角的概念 1、复习提问: (1)什么是圆心角? 答:顶点在圆心的角叫圆心角. (2)圆心角的度数定理是什么?

答:圆心角的度数等于它所对弧的度数.(如右图) 2、引题圆周角:

如果顶点不在圆心而在圆上,则得到如左图的新的角∠ACB,它就是圆周角.(如右图)(演示图形,提出圆周角的定义)

定义:顶点在圆周上,并且两边都和圆相交的角叫做圆周角 3、概念辨析:

1判断下列各图形中的是不是圆周角,并说明理由.

学生归纳:一个角是圆周角的条件:①顶点在圆上;②两边都和圆相交.

1 / 3

word

(二)圆周角的定理 1、提出圆周角的度数问题

问题:圆周角的度数与什么有关系?

经过电脑演示图形,让学生观察图形、分析圆周 角与圆心角,猜想它们有无关系.引导学生在建立关系 时注意弧所对的圆周角的三种情况:圆心在圆周角的一 边上、圆心在圆 周角内部、圆心在圆周角外部.

(2)其它情况,圆周角与相应圆心角的关系:

当圆心在圆周角外部时(或在圆周角内部时)引导学生作辅助线将问题转化成圆心在圆周角一边上的情况,从而运用前面的结论,得出这时圆周角仍然等于相应的圆心角的结论. 证明:作出过C的直径(略)

可以发现同弧所对的圆周角的度数没有变化,并且它的度数恰好等于这条弧所对等于它所对圆心角的一半.

说明:这体现了数学中的分类方法;在证明中,后两种都化成了第一种情况,这体现数学中的化归思想.(对A层学生渗透完全归纳法) 2、巩固练习:

(1)如图,已知圆心角∠AOB=100°,求圆周角∠ACB、∠ADB的度数? (2)一条弦分圆为1:4两部分,求这弦所对的圆周角的度数?

说明:一条弧所对的圆周角有无数多个,却这条弧所对的圆周角的度数只有一个,但一条弦所对的圆周角的度数只有两个. (四)总结

知识:(1)圆周角定义及其两个特征;(2)圆周角定理的内容.

2 / 3

word

(五)作业:

(六)教学反思:

3 / 3

因篇幅问题不能全部显示,请点此查看更多更全内容