一、高耐久性混凝土技术 (一)技术内容
高耐久性混凝土是通过对原材料的质量控制、优选及施工工艺的优化控制,合理掺加优质矿物掺合料或复合掺合料,采用高效(高性能)减水剂制成的具有良好工作性、满足结构所要求的各项力学性能、且耐久性优异的混凝土。
(1)原材料和配合比的要求 1)水胶比(W/B)≤0.38。
2)水泥必须采用符合现行国家标准规定的水泥,如硅酸盐水泥或普通硅酸盐水泥等,不得选用立窑水泥;水泥比表面积宜小于350m2/kg,不应大于380m2/kg。
3)粗骨料的压碎值≤10%,宜采用分级供料的连续级配,吸水率<1.0%,且无潜在碱骨料反应危害。
4)采用优质矿物掺合料或复合掺合料及高效(高性能)减水剂是配制高耐久性混凝土的特点之一。优质矿物掺合料主要包括硅灰、粉煤灰、磨细矿渣粉及天然沸石粉等,所用的矿物掺合料应符合国家现行有关标准,且宜达到优品级,对于沿海港口、滨海盐田、盐渍土地区,可添加防腐阻锈剂、防腐流变剂等。矿物掺合料等量取代水泥的最大量宜为:硅粉≤10%,粉煤灰≤30%,矿渣粉≤50%,天然沸石粉≤10%,复合掺合料≤50%。
5)混凝土配制强度可按以下公式计算: fcu,0≥fcu,k+1.645σ
式中fcu,0——混凝土配制强度(MPa);
fcu k, ——混凝土立方体抗压强度标准值(MPa);
σ——强度标准差,无统计数据时,预拌混凝土可按《普通混凝土配合比设计规程》JGJ55 的规定取值。
(2)耐久性设计要求
对处于严酷环境的混凝土结构的耐久性,应根据工程所处环境条件,按《混凝土结构耐久性设计规范》GB/T 50467 进行耐久性设计,考虑的环境劣化因素及采取措施有:
1)抗冻害耐久性要求:a)根据不同冻害地区确定最大水胶比;b)不同冻
害地区的抗冻耐久
性指数DF 或抗冻等级;c)受除冰盐冻融循环作用时,应满足单位面积剥蚀量的要求;d)处于有冻害环境的,应掺入引气剂,引气量应达到3%~5%。
2)抗盐害耐久性要求:a)根据不同盐害环境确定最大水胶比;b)抗氯离子的渗透性、扩散性,宜以56d 龄期电通量或84d 氯离子迁移系数来确定。一般情况下,56d 电通量宜≤800C,84d氯离子迁移系数宜≤2.5*10^12m2/s;c)混凝土表面裂缝宽度符合规范要求。
3)抗硫酸盐腐蚀耐久性要求:a)用于硫酸盐侵蚀较为严重的环境,水泥熟料中的C3A 不宜超过5%,宜掺加优质的掺合料并降低单位用水量;b)根据不同硫酸盐腐蚀环境,确定最大水胶比、混凝土抗硫酸盐侵蚀等级;c)混凝土抗硫酸盐等级宜不低于KS120。
4)对于腐蚀环境中的水下灌注桩,为解决其耐久性和施工问题,宜掺入具有防腐和流变性能的矿物外加剂,如防腐流变剂等。
5)抑制碱—骨料反应有害膨胀的要求:a)混凝土中碱含量<3.0kg/m3;b)在含碱环境或高湿度条件下,应采用非碱活性骨料;c)对于重要工程,应采取抑制碱骨料反应的技术措施。
(二)技术指标 (1)工作性
根据工程特点和施工条件,确定合适的坍落度或扩展度指标;和易性良好;坍落度经时损失满足施工要求,具有良好的充填模板和通过钢筋间隙的性能。
(2)力学及变形性能
混凝土强度等级宜≥C40;体积稳定性好,弹性模量与同强度等级的普通混凝土基本相同。
(3)耐久性
可根据具体工程情况,按照《混凝土结构耐久性设计规范》GB/T 50467、《混凝土耐久性检验评定标准》JGJ/T193 及上述技术内容中的耐久性技术指标进行控制;对于极端严酷环境和重大工程,宜针对性地开展耐久性专题研究。
耐久性试验方法宜采用《普通混凝土长期性能和耐久性能试验方法标准》GB/T50082 和《预防混凝土碱骨料反应技术规范》GB/T 50733 规定的方法。
(三)适用范围
高耐久性混凝土适用于对耐久性要求高的各类混凝土结构工程,如内陆港口与海港、地铁与隧道、滨海地区盐渍土环境工程等,包括桥梁及设计使用年限100 年的混凝土结构,以及其他严酷环境中的工程。
(四)工程案例
天津地铁、杭州湾大桥、山东东营黄河公路大桥、武汉武昌火车站、广州珠江新城西塔工程、湖南洞庭湖大桥等。
二、高强高性能混凝土技术 (一)技术内容
高强高性能混凝土(简称HS-HPC)是具有较高的强度(一般强度等级不低于C60)且具有高工作性、高体积稳定性和高耐久性的混凝土(“四高”混凝土),属于高性能混凝土(HPC)的一个类别。其特点是不仅具有更高的强度且具有良好的耐久性,多用于超高层建筑底层柱、墙和大跨度梁,可以减小构件截面尺寸增大使用面积和空间,并达到更高的耐久性。
超高性能混凝土(UHPC)是一种超高强(抗压强度可达150MPa 以上)、高韧性(抗折强度可达16MPa 以上)、耐久性优异的新型超高强高性能混凝土,是一种组成材料颗粒的级配达到最佳的水泥基复合材料。用其制作的结构构件不仅截面尺寸小,而且单位强度消耗的水泥、砂、石等资源少,具有良好的环境效应。
HS-HPC 的水胶比一般不大于0.34,胶凝材料用量一般为480~600kg/m3,硅灰掺量不宜大于10%,其他优质矿物掺合料掺量宜为25%~40%,砂率宜为35%~42%,宜采用聚羧酸系高性能减水剂。
UHPC 的水胶比一般不大于0.22,胶凝材料用量一般为700~1000kg/m3。超高性能混凝土宜掺加高强微细钢纤维,钢纤维的抗拉强度不宜小于2000MPa,体积掺量不宜小于1.0%,宜采用聚羧酸系高性能减水剂。
(二)技术指标 (1)工作性
新拌HS-HPC 最主要的特点是粘度大,为降低混凝土的粘性,宜掺入能够降低混凝土粘性且对混凝土强度无负面影响的外加剂,如降粘型外加剂、降粘增强剂等。UHPC 的水胶比更低,粘性更大,宜掺入能降低混凝土粘性的功能型外加
剂,如降粘增强剂等。
混凝土拌合物的技术指标主要是坍落度、扩展度和倒坍落度筒混凝土流下时间(简称倒筒时间)等。对于HS-HPC,混凝土坍落度不宜小于220mm,扩展度不宜小于500mm,倒置坍落度筒排空时间宜为5~20s,混凝土经时损失不宜大于30mm/h。
(2)HS-HPC 的配制强度可按公式fcu,0≥1.15fcu,k 计算; UHPC 的配制强度可按公式fcu,0≥1.1fcu,k 计算;
(3)HS-HPC 及UHPC 因其内部结构密实,孔结构更加合理,通常具有更好的耐久性,为满足抗硫酸盐腐蚀性,宜掺加优质的掺合料,或选择低C3A 含量(<8%)的水泥。
(4)自收缩及其控制 1)自收缩与对策
当HS-HPC 浇筑成型并处于绝湿条件下,由于水泥继续水化,消耗毛细管中的水分,使毛细管失水,产生毛细管张力(负压),引起混凝土收缩,称之自收缩。通常水胶比越低,胶凝材料用量越大,自收缩会越严重。
对于HS-HPC 一般应控制粗细骨料的总量不宜过低,胶凝材料的总量不宜过高;通过掺加钢纤维可以补偿其韧性损失,但在氯盐环境中,钢纤维不太适用;采用外掺5%饱水超细沸石粉的方法,或者内掺吸水树脂类养护剂、外覆盖养护膜以及其他充分的养护措施等,可以有效的控制
HS-HPC 的自收缩。
UHPC 一般通过掺加钢纤维等控制收缩,提高韧性;胶凝材料的总量不宜过高。
2)收缩的测定方法
参照《普通混凝土长期性能和耐久性能试验方法标准》GB/T50082 进行。 (三)适用范围
HS-HPC 适用于高层与超高层建筑的竖向构件、预应力结构、桥梁结构等混凝土强度要求较高的结构工程。
UHPC 由于高强高韧性的特点,可用于装饰预制构件、人防工程、军事防爆工程、桥梁工程等。
(四)工程案例
合肥天时广场、上海中心大厦、天津117 大厦、广州珠江新城西塔项目等国内工程已大量应用HS-HPC,国外超高层建筑及大跨度桥梁也大量应用了HS-HPC。
目前UHPC 已成功应用于国内高速铁路的电缆沟盖板(RPC 盖板)、长沙横四路某跨街天桥、马房北江大桥UHPC 桥面铺装层等。
因篇幅问题不能全部显示,请点此查看更多更全内容