您的当前位置:首页正文

spss结果中F值,t值及其显著性sig的解释

2023-03-05 来源:好走旅游网


spss结果中,F值,t值及其显着性(sig)的解释

用spss处理完数据的显示结果中,F值,t值及其显着性(sig)都分别是解释什么的?

一般而言,为了确定从样本(sample)统计结果推论至总体时所犯错的概率,我们会利用统计学家所开发的一些统计方法,进行统计检定。

通过把所得到的统计检定值,与统计学家建立了一些随机变量的概率分布(probability distribution)进行比较,我们可以知道在多少%的机会下会得到目前的结果。倘若经比较后发现,出现这结果的机率很少,亦即是说,是在机会很少、很罕有的情况下才出现;那我们便可以有信心的说,这不是巧合,是具有统计学上的意义的(用统计学的话讲,就是能够拒绝虚无假设null hypothesis,Ho)。相反,若比较后发现,出现的机率很高,并不罕见;那我们便不能很有信心的直指这不是巧合,也许是巧合,也许不是,但我们没能确定。

F值和t值就是这些统计检定值,与它们相对应的概率分布,就是F分布和t分布。统计显着性(sig)就是出现目前样本这结果的机率。

至於具体要检定的内容,须看你是在做哪一个统计程序。

举一个例子,

比如,你要检验两独立样本均数差异是否能推论至总体,而行的t检验。

两样本(如某班男生和女生)某变量(如身高)的均数并不相同,

但这差别是否能推论至总体,代表总体的情况也是存在着差异呢?

会不会总体中男女生根本没有差别,只不过是你那麽巧抽到这2样本的数值不同?

为此,我们进行t检定,算出一个t检定值,

与统计学家建立的以「总体中没差别」作基础的随机变量t分布进行比较,

看看在多少%的机会(亦即显着性sig值)下会得到目前的结果。

若显着性sig值很少,比如<0.05(少於5%机率),

亦即是说,「如果」总体「真的」没有差别,那麽就

只有在机会很少(5%)、很罕有的情况下,才会出现目前这样本的情况。

虽然还是有5%机会出错,但我们还是可以「比较有信心」的说:

目前样本中这情况(男女生出现差异的情况)不是巧合,是具统计学意义的,

「总体中男女生不存差异」的虚无假设应予拒绝,简言之,总体应该存在着差异。

每一种统计方法的检定的内容都不相同,

同样是t-检定,可能是上述的检定总体中是否存在差异,

也同能是检定总体中的单一值是否等於0或者等於某一个数值。

至於F-检定,方差分析(或译变异数分析,Analysis of Variance),

它的原理大致也是上面说的,但它是透过检视变量的方差而进行的。

它主要用于:均数差别的显着性检验、分离各有关因素并估计其对总变异的作用、分析因素间的交互作用、方差齐性(Equality of Variances)检验等情况。

因篇幅问题不能全部显示,请点此查看更多更全内容