ground-state
propertiesof2DIsingspinglass
ZhiFangZhan,LikWeeLee,Jian-ShengWang
DepartmentofComputationalScience,NationalUniversityofSingapore,Singapore119260,RepublicofSingapore
February6,2008
Abstract
Anewapproachknownasflathistogrammethodisusedtostudythe±JIsingspinglassintwodimensions.Temperaturedependenceoftheenergy,theentropy,andotherphysicalquantitiescanbeeasilycalculatedandwegivetheresultsforthezero-temperaturelimit.Fortheground-stateenergyandentropyofaninfinitesystemsize,weestimatee0=−1.4007±0.0085ands0=0.0709±0.006,respectively.Bothofthemagreewellwithpreviouscalculations.Thetimetofindtheground-statesaswellasthetunnelingtimesofthealgorithmarealsoreportedandcomparedwithothermethods.
Keywords:MonteCarlodynamics;Flathistogramsampling;Isingspinglass;Ground-states;Tunnelingtime.
PACSnumbers:02.70.Lq,05.50+q,05.10.Ln,75.10.Nr,75.40.Mg.
1Introduction
Theequilibriumpropertiesofspinglasshaveremainedagreatchallengeinnumericalsimulations.Investigatingtheequilibriumground-statestructureofspinglassisalsoimportantandinteresting.Inthelast20years,therehasbeenagreatdealofworkonspinglass[1].ItisgenerallyagreedthatthesimplestspinglasssystemformosttheoreticalworkistheEdwards-Anderson(EA)model,whoseHamiltonianis
H=−
Jijσiσj,(1)
whereσitakesonthevalues±1andthesumgoesoverthenearestneighbors.TheJijaredimensionlessvariableswhichdescribetherandominteractionsbetweenthespinsandaretakenasJij=±1.Intwodimensions,aphasetransitionoccursonlyatzerotemperature[2,3,4]forthiskindof±JIsingspinglasswithnearestneighborinteractions.Thismodelhasbeenstud-iedpreviouslybythetransfermatrixmethod[2,5],replicaMonteCarlomethod[4,6],multicanonicalensemblemethod[7]andmanyothermethods(seeref[1]forareview).
ThetraditionalMonteCarlomethodsmostlyconcentrateongeneratingstandardstatisticalensembles,e.g.,thecanonicalensembleormicrocanonicalensemble.Usingthecanonicalensemblesimulations,weneedtosimulateatdifferenttemperaturestogetfullinformationaboutthesystem.Itistedioustocalculatecertainthermodynamicquantitieslikethefreeenergyandtheentropysincethedensityofstatescannotbeobtaineddirectlyfromthesimu-lationdata.Thecorrelationbetweensubsequentconfigurationsgeneratedbycanonicalensemblesimulationsalsocausestheergodicityproblemforsomesystems.In1991,Bergproposedthemulticanonicalensemblemethod[8]toovercometheaboveshortcomingsofsimulationsoncanonicalensemble.ThemulticanonicalensembleisanensemblewheretheprobabilityP(E)ofhavingenergyEatequilibriumisaconstant.Themulticanonicalmethodhasbeenverysuccessfulinsolvingthesystemsthatinvolveenergybarriers.Recently,Wangproposedadynamics[9]whichcangenerateaflathis-togramintheenergyspaceasthemulticanonicalmethod.Thisdynamicshassomeconnectionswiththebroadhistogrammethod[10],whichdoesnotgivethecorrectmicrocanonicalaverage[9].Similartothebroadhistogrammethod,thenewdynamicsisalsobasedonN(σ,∆E),the(microcanon-ical)averagenumberofpotentialmoveswhichincreasetheenergyby∆E
1
inasinglespinflip.Acumulativeaverage(overMonteCarlosteps)canbeusedasafirstapproximationtotheexactmicrocanonicalaverageinthefliprate.Thermodynamicquantitiescanbethencalculatedfromthesimulationdatawithease.Inthispaper,weusethenewmethodtostudythether-modynamicsaswellasground-statepropertiesforthetwo-dimensionalIsingspinglasssystem.
InSection2,theflathistogramtransitionmatrixMonteCarlodynamicsisdescribed.Usingtheflathistogramsampling,wegettheaveragenumberofpotentialmovesN(σ,∆E)E,whichcanbeusedtoconstructatransi-tionmatrixMonteCarlodynamicsintheenergyspace[11].Weapplythenewmethodtotwo-dimensionalIsingspinglassandpresentsomenumericalresultsinSection3.Inthelastsection,wegiveaconclusiontothenewmethod.
2
ThetransitionmatrixMonteCarlodynam-icswiththeflathistogramsampling
Toconnectourdynamicswithsingle-spin-flipGlauberdynamics[12],werestricttheprotocolofeachmovetobesingle-spinflipinthefollowingdis-cussion.ForagivenstateσwithenergyE,considerallpossiblesingle-spinflips.Thesingle-spinflipschangethecurrentstateintoNpossiblenewstates,withnewenergyE′=E+∆E.Fortwo-dimensionalIsingspinglass,∆E=0,±4,and±8.WeclassifytheNnewstatesaccordingto∆EandcountthenumberofN(σ,∆E).SinceeachmovefromthestateσofenergyEtothestateσ′ofenergyE′andthereversemovearebothallowed,thetotalnumberofmovesfromallthestateswithenergyEtoE′isthesameasfromE′toE.Thus,wehave[13]
E(σ)=E
N(σ,∆E)=
E(σ′)=E+∆E
N(σ′,−∆E).
(2)
ThemicrocanonicalaverageofaquantityA(σ)isdefinedas
AE=
1
canrewriteEq.(2)as
n(E)N(σ,∆E)E=n(E+∆E)N(σ′,−∆E)E+∆E.
(4)
Eq.(4)isthebasicresultofthebroadhistogrammethod[10].Whilethebroadhistogramrandomwalkalgorithmisnotcorrect,Eq.(4)isnotprob-lematicandtakenasthestartingpointoftheflathistogramsampling.
Weselectasitetoflipatrandom.Thefliprateforasingle-spinflipfromstateσwithenergyEtoσ′withenergyE′=E+∆Eischosenas
r(E|E)=min1,
′
N(σ′,−∆E)E′
n(E)
=const.(7)
SinceN(σ,∆E)Eisnotknowningeneral,anapproximationschemeshouldbeusedtostartthesimulation.ForthoseEwhichwehavenotvisitedyet,wesimplysetr(E′|E)=1.Thenacumulativeaverage(overMonteCarlosteps)canbeusedasanapproximationtotheexactmicrocanonicalaverageinthefliprate.Wehavenumericalevidencethatthisprocedureconvergestotheexactresult.
WecanthenconstructatransitionmatrixMonteCarlodynamicsintheenergyspace[11]withN(σ,∆E)E.Forasingle-spin-flipGlauberdynamicswithenergychange∆E,thefliprateisgivenas
w(∆E)=
1
2kBT
.(8)
Sincethereare(onaverage)N(σ,∆E)EdifferentwaysofgoingfromEtoE′=E+∆E,thetotalprobabilityfortransitionfromEtoE′is
W(E+∆E|E)=w(∆E)N(σ,∆E)E,
for∆E=0.
(9)
3
Thediagonalelementscanbedeterminedby∆EW(E+∆E|E)=1,sincethetotalprobabilityfromEtoE′is1.ThisnewdynamicsinthespaceofenergyEisrelatedtosingle-spin-flipdynamicsby[11]
W(E′|E)=
1
wayforsimulatingthemulticanonicalensemble.
Theflathistogramalsogeneralizeseasilytomulti-variatemodels[14].AnexampleistheIsingSpinGlassmodelwithoverlapparameterqwhichhastheHamiltonian
H2=−
11Jijσiσj−
22
Jijσiσj−h
i
12
σiσi.q
(12)
EreferstothefirsttwointeractiontermsinvolvingthecouplingconstantsJij.
Inthisbivariatecase,thequantityN(σ,∆E)generalizetoN(σ,∆E,∆q).Itcanbeeasilyshownthatthedetailedbalanceconditionisnow
n(E,q)N(σ,∆E,∆q)E,q=n(E+∆E,q+∆q)N(σ′,−∆E,−∆q)E+∆E,q+∆q
(13)
withn(E,q)asthenew“densityofstates”.ThealgorithmgivesaflathistograminbothEandq.
3Numericalresults
WehaveperformedsimulationsonlatticesofsizeL=4,10,16,24and32.Eachsimulationstartswithindependentrandomnumbers.Toillustratetheperformanceofouralgorithm,wedefinethetimeτLastheaveragenumber(overcouplingconstantJij)ofMonteCarlostepsneededtoreachtheground-states.AMonteCarlostepisdefinedasflippingeachspinonthelatticeonce(ontheaverage).Table1givesanoverviewoftypicaltimeinMonteCarlostepstoreachtheground-states,startingfromanarbitraryenergylevel.Thetimetoreachtheground-statesdependsonthesizeofthesystemandalsotherandominteractions.WeconsideralargenumberofrandomcouplingstatestomakethestatisticalerrorsmallenoughinTable1.Thesimulationsarelongenoughtoensurethatthegroundstatesarereallyreached.InFig.1weplotthetimeτLversuslatticesizeLonadoublelogscale.Thedataareconsistentwithastraight-linefit,whichgivesthefinite-sizebehavior
τL∝L4.71,
MCsteps.
(14)
ThecorrespondingCPUtimeforaDigitalAlpha600MworkstationisalsoshowninTable1.Foraccuracy,5independentrunsareperformedforeach
5
latticesizetoobtaintheaverageCPUtime.UptoL=32theCPUtimecanbeapproximatedbyapolynomialfunctionofL6.08.
L
τL(MCSteps)
CPUtime(second)
L
FlatHistogram(F.H.)Multicanonical(M.C.)Bivariateinq(q)
N
lnn(E).(17)
Sincen(E)canbecalculatedfromthesimulationdatadirectly,wethenobtainS(E)withease.
Tocomparewiththeresultsobtainedintheliterature,wefitourdatausingtheformfL=f∞+c/L2andgete0=−1.4007±0.0085,s0=0.0709±0.006.TheenergyfitisplottedinFig.3,andtheentropyfitinFig.4.Ourenergyestimatee0=−1.4007±0.0085isconsistentwiththepreviousMCestimate[4]e0=−1.407±0.008aswellaswiththetransfermatrixresult[5]e0=−1.4024±0.0012.Ourentropyestimates0=0.0709±0.006isalsoconsistentwiththeMCestimate[4]s0=0.071±0.007aswellasthetransfermatrixresult[5]s0=0.0701±0.005.Forthetwo-dimensionalIsingspinglasssystem,DeSimoneetal.[16]useanexactalgorithmbasedonthebranch-and-cuttechniquetofindtheexactground-stateswithsystemsizeupto50×50.Theyobtaintheextrapolatedresulte0=−1.4022±0.0003.WhencomparedwithBerg’sresult,e0=−1.394±0.007,s0=0.081±0.004,itseemsthatourmethodgivesamoreaccurateestimateforground-stateenergyandentropyforaninfinitesystem.
7
106105(τL ~ L1044.71)τL1031021011248163263LFigure1:τLvslatticesizeonadoublelogscale.
105104(τq ~ L4.45)τq10310210112481632LFigure2:Tunnelingtimeofbivariatemodelonadoublelogscale.
8
−1.3−1.32−1.34e = −1.4007 ± 0.00850e0−1.36−1.38−1.4−1.420510152025303540LFigure3:FSSestimateofenergyperspinoftheinfinitesystemsize.
0.20.15 s = 0.0709 ± 0.0060 s00.10.050510152025303540LFigure4:FSSestimateofentropyperspinoftheinfinitesystemsize.
9
4Conclusions
Wehaveusedanewapproachtoinvestigatetheground-statepropertiesofthetwo-dimensionalIsingspinglass.Comparedwithstandardsimulations,theadvantageofourmethodisobvious.Fortheergodicityproblemen-counteredinstandardsimulations,ourmethodbehavesaswellasBerg’smulticanonicalensemblemethod,whileitiseasiertobeimplementedcom-paredwithBerg’smethod.Ourmethodalsogeneralizestraightforwardlytomulti-variatemodelswithoutmucheffortinprogrammingandtheory.
Tofindatrueground-state,weroughlyneedaCPUtimeoforderL6.ItisthesamewithLawler’sexactalgorithm[17].Uptosize50×50,DeSimone’salgorithmalsoneedsatimeoforderL6.Butitisnotclearwhetherhisalgorithmcanbeefficientlyimplementedfor3Dsystems.Howeverourmethodcanalsobeeasilyappliedto3Dspinglasssystem.Ifoneisjustinter-estedinfindingtheground-states,therearealsootheroptimizedalgorithms.Chen’slearningalgorithm[18]isfastinfindingtheground-statescomparedwithmostalgorithms,butitisnotageneralone.Thermodynamicquantitiescannotbeobtainedwiththisalgorithm.
Webelievethattheapproachwepresentinthispaperisusefulinstudyingthethermodynamicsaswellasground-statepropertiesforspinglasssystems.Italsocanbeappliedtoothermodelsbecauseofitsgenerality.
References
[1]K.BinderandA.P.Young,Rev.Mod.Phys.58,801(1986).
[2]I.MorgensternandK.Binder,Phys.Rev.Lett.43,1615(1979);Phys.
Rev.B22,288(1980).[3]W.L.McMillan,Phys.Rev.B28,5216(1983).
[4]R.H.SwendsenandJ.-S.Wang,Phys.Rev.Lett.57,2607(1986).[5]H.-F.CheungandW.L.McMillan,J.Phys.C16,7027(1983).[6]J.-S.WangandR.H.Swendsen,Phys.Rev.B38,4840(1988).[7]B.BergandT.Celik,Phys.Rev.Lett.692292(1992).[8]B.BergandT.Neuhaus,Phys.Lett.B267249(1991).
10
[9]J.-S.Wang,Eur.Phys.J.B8,287(1999).
[10]P.M.C.deOliveira,T.J.P.Penna,andH.J.Herrmann,Braz.J.Phys.
26,677(1996);Eur.Phys.J.B1,205(1998);Braz.J.Phys.30,195(2000).[11]J.-S.Wang,T.K.Tay,R.H.Swendsen,Phys.Rev.Lett.82,476(1999).[12]R.J.GlauberJ.Math.Phys.4,294(1963);B.U.Felderhof,Rep.Math.
Phys.1,215(1970);K.Kawasaki,inPhaseTransitionsandCriticalPhenomena,editedbyC.DombandM.S.Green(AcademicPress,Lon-don,1972),Vol.2,p.443.[13]J.-S.WangandL.W.Lee,cond-mat/9903224(1999).
[14]A.R.Lima,P.M.C.deOliveiraandT.J.P.Penna,cond-mat/9912152
(1999).[15]N.HatanoandJ.E.Gubernatis,MonteCarloandStructureOptimiza-tionMethodsforBiology,ChemistryandPhysics,ElectronicProceed-ings,http://www.scri.fsu.edu/MCatSCRI/proceedings(1999).[16]C.DeSimone,M.Diehl,J¨unger,P.Mutzel,G.ReineltandG.Rinaldi,
J.Stat.Phys.,84,1363(1996).[17]E.L.Lawler,CombinatorialOptimization:NetworksandMatroids
(Holt,Reinehart,andWinston,NewYork,1976).[18]K.Chen,Europhys.Lett.43,635(1998).
11
因篇幅问题不能全部显示,请点此查看更多更全内容