教学目标:
1、探索并掌握三角形面积公式,能正确计算三角形的面积,并能应用公式解决简单的实际问题。
2、使学生经历操作、观察、讨论、归纳等数学活动,进一步体会转化方法的价值,发展学生的空间观念和初步的推理能力。
3、让学生在探索活动中获得积极的情感体验,进一步培养学生学习数学的兴趣。
教学重点:探索并掌握三角形面积计算公式,能正确计算三角形的面积。
教学难点: 三角形面积公式的探索过程。
教学方法:学生合作探索
教具准备:课件、平行四边形纸片、两个完全一样的三角形各三组、剪刀等。
学具准备:每个小组至少准备完全一样的直角三角形、锐角三角形、钝角三角形各两个,一个平行四边形,剪刀。
教学过程:
一、创设情境、导入。
师:昨天下年,老师接到一个任务,想请咱们班的同学帮我一起解决,你们愿意吗?
今年“六一”儿童节,我们学校少先队要吸收100名同学入队,需要做100条红领巾(电脑出示:红领巾),需要买多少布料?(电脑出示问题:需要买多少布料)
师:要解决这个问题,必须知道什么?
生:必须知道一条红领巾的大小。
师:也就是要知道一条红领巾的面积。你们看看红领巾是什么形状的?
生:三角形。
师:三角形面积的计算方法,我们还没有接触过,这节课我们就一起来研究三角形的面积。(板书:三角形的面积)
[设计意图:利用学生熟悉的红领巾引入,调动学生探究的热情。]
二、新授。
1、复习:
师:回忆一下,平形四边形面积的计算方法是怎么推导的?
生1:将平行四边形沿着它的一条高裁下一部分,平移到另一边,变成一个长方形。
师:公式是怎么推导出来的?
生2:平行四边形的底就是长方形的长,平行四边形的高就是长方形的宽。因为长方形面积=长×宽,所以,平行四边形面积=底×高。
师:大家对平形四边形的面积公式的推导掌握得不错(电脑出示:(1)转化成已学过的求面积计算的图形。(2)找到它们之间的联系,推导出面积计算的公式)
师:我们先把平行四边形转化成已学会的计算面积的图形长方形,然后找到平行四边形与长方形之间的联系,推导出了平行四边形的面积公式,我们能不能依照平行四边形面积公式推导的方法,试着找到三角形面积计算的方法呢?
生:能。
[设计意图:利用新旧知识间的联系,使旧知识成为新知识的铺垫。]
2.操作实践:
(1)提出操作和探究要求。
让学生拿出课前准备的三种类型三角形(各两个)小组合作动手拼一拼、摆一摆或剪拼。
屏幕出示讨论提纲:①用两个完全一样的三角形摆拼,能拼出什么图形?
②拼出的图形与原来三角形有什么联系?
(2)学生以小组为单位进行操作和讨论。
学生实验,教师参与到小组中进行指导。
[设计意图:放手给学生自主探索,让学生的智慧充分得到施展。]
(3)展示学生的剪拼过程,交流汇报。
(让学生将转化后的图形贴在黑板上,再选择有代表性的情况汇报)
组1:我们用两个直角三角形拼成一个长方形。
师:我这有两个直角三角形,可是拼不成,你用的是两个什么样的三角形?(教师操作)
生:我们用的是两个完全一样的三角形。
师:你怎么知道是两个完全一样的三角形?
生:把两 个三角形重合,就可以知道是两个完全一样的三角 形。
师:你们用两个完全一样的三角形,拼成了长方形,怎么拼得这么快?
生:我们找到了两条相等的边,而且两个三角形的方向相反。
师:看来呀,要想很快地用两个完全一样的直角三角形拼成长方形,首先要找到对应相等的边,然后把两个三角形反方向对齐。(教师操作)还有没有其他结果?
组2:我们还用两个完全一样的锐角三角形拼成平行四边。
师:你们是怎么拼的?
生:把两个三角形重合,找到相等的边,再把两个三角形反方向对齐,就可以拼出平行四边形。
师:三角形有几条边?
生:三条边。
师:所以,用两个完全一样的三角形中任意两条对应相等的边都可以拼成一个平行四边形。还有没别的结果?
组3:我们用两个完全一样的等腰直角三角形,拼成了一个正方形。
师:非常好。
3.第二次操作实践。
师:大家来看,你们已经把三角形转化成了平行四边形,长方形,那么,怎么推导出三角形的面积方法呢?下面我们进行第二次小组合作,根据你们本组转化的图形,找到它们之间的联系,推导出三角形面积的计算公式,开始。
(学生实验,教师参与到小组中进行指导。)
师:同学们计论得非常认真,找到三角形的面积计算方法了吗?
生:找到了。
师:哪个小组说说你们是怎么找到的?
生:我们用两个完全一样的三角形拼成了平行四边形,平行四边形的面积是底乘以高, 再除以2就可以求出一个三角形的面积。(板书:底*高 2)
师:是不是求一个三角形的面积,我们一定要拼成平行四边形以后现算?
生:不用,我们发现三角形的底和平行四边形的底相等,三角形的高和平行四边形的高相等,所以三角形的面积是底乘以高再除以2。(板书:三角形的面积=底*高 2)
师:你们的发现太棒了,同学们,看看你们拼成的平行四边形之间是不是也存在着底和底相等,高和高相等这种关系?
生:是。
师:拼成的平行四边形与三角形不但面积有关系,它们底和高也不关系,三角形的底等与拼成的平行四边形的底,这种相等的关系叫做等底,三角形的高等于拼成的平行四边的高,这种相等的关系叫做等高,那么三角形的底乘以高求出的是什么?
生:平行四边形的面积。
师:每个三角形的面积与拼成的平行四边形的面积有什么关系?
生1:拼成的平行四边形是三角形面积的二倍。
生2:每个三角形的面积是拼成的平行四边形的面积的一半。(评价、肯定)
[设计意图:通过大量感知,弄清了将两个完全一样的三角形转化成平行四边形后,它们间到底有什么关系。同时又渗透了转化的数学思想方法。]
师:因为三角形面积=拼成的平行四边形面积÷2,所以,三角形面积=底×高÷2[板书:三角形面积=底×高÷2]是这样吗?
生:是的。
师:如果用s表示三 角 形 面 积,用α和h分别表示三 角 形的底和高,那么你能用字母写出三角形的面积公式吗?
生:s=ah÷2[板书:s=ah÷2]
4.看书质疑。
指名讲述课本中是怎样得出三角形面积公式的。
师:我们刚才是从两个完全一样的直角三角形、锐角三角形和钝角三角形与拼成的平行四边形关系中得出求三角形面积的公式的。你们还能用别的方法去推导三角形的面积公式吗?
生1演示:(沿两腰中点裁开,将上部绕一端旋转180度)师生共同得出,三角形的面积=底×(高÷2)=底×高÷2
生2演示:(沿等腰三角形的高裁开,拼成长方形)师生共同得出,三角形的面积=(底÷2)×高=底×高÷2
师:同学们真了不起,想到那么多的方法推导出三角形的面积公式。得到了这个公式,我们就可以求出任何三角形的面积。用这个公式计算三角形的面积(指板书),需要知道什么条件?(反扣公式,加深理解)
三、应用新知,解决问题
师:有了公式,下面我们可以帮学校解决问题了。
学生独立完成(一生板演),集体订正。
师:你认为计算三角形的面积,什么地方容易出错?
生1:÷2
生2:×100
师:是呀,同学们做题一定要仔细,相好每一步求的是什么,才能避免出错。
[设计意图:这是公式的运用环节,同时回应引入的问题]
四、深化理解、应用拓展
1、课本31页的练习第5题。课件出示下图:
师:你认识这些道路交通警示标志吗?一块标志牌的面积大约是多少平方分米?
(教育学生要遵守交通规则,注意交通安全,接着让学生口头列算式,不用计算。)
2、想一想,下面说法对不对?为什么 ?
(1)三角形面积是平行四边形面积的一半。( )
(2)一个三角形面积为20平方米,与它等底等高平行四边形面积是40平方米。( )
(3)一个三角形的底和高是4厘米,它的面积就是16平方厘米。( )
(4)等底等高的两个三角形,面积一定相等。 ( )
(5)两个三角形一定可以拼成一个平行四边形。( )
3.做课本33页第11题(然后汇报、评讲。)
[设计意图:设计分层练习,巩固、理解并提高了对三角形面积公式的认识。]
五、回顾总结,深化提高:
师:这节课探究了什么?
生:三角形的面积。
师:是怎样探究的呢?
生:转化成平行四边形。
师:对!今天我们分小组通过动手操作,相互讨论、交流,用摆拼(还可以用折叠、割补)等方法将三角形转化成学过的图形推导出了三角形面积的计算公式,这种“转化”的数学思想方法能帮助我们找到探究问题的方向,相信同学们今后能应用这一数学方法探究和解决更多的数学问题。
[设计意图:引导学生回顾和反思自己获取知识的思路和过程,归纳提炼学习方法]
教学后记:
对于本节课的教学就教学效果上来看,我比较满意。
一是创设了学生熟悉的“做红领巾,帮学校计算要用多少布”这一情境,激起了学生想知道怎样去求三角形面积的欲望,从而将“教”的目标转化为学生“学”的目标。
二是有效地利用了平行四边形面积公式的推导经验,使学生很容易就找到新旧知识间的联系,使旧知识成为新知识的铺垫,把三角形也转化成平行四边形来求它的面积呢。
三是在大量感知的基础上,通过自主学习,再通过课件的演示使同学们更具体、清晰地弄清了将两个完全一样的三角形转化成平行四边形后,它们间到底有什么关系。同时又渗透了转化的数学思想方法,突破了教学难点。
四是通过分三个层次设计练习,第一层基本练习,使学生巩固、理解并提高了对三角形面积公式的认识。
但我深知,需要改进的地方还有很多,如版块有点小,其次,“用两个完全一样的三角形摆拼,能拼出什么图形?”的设计是为了体现两个完全一样的三角形能拼成了平行四边形,但从另一个角度上来看,禁锢了学生的思维,使的学生思考的空间变小了。再是我的课堂语言仍不够简洁,这些都需要努力改进。
因篇幅问题不能全部显示,请点此查看更多更全内容