您的当前位置:首页正文

《有理数的除法》教案

2020-08-14 来源:好走旅游网

  一、课题 §2.9有理数的除法

  二、教学目标

  1.使学生理解有理数倒数的意义;

  2.使学生掌握有理数的除法法则,能够熟练地进行除法运算;

  3.培养学生观察、归纳、概括及运算能力.

  三、教学重点和难点

  重点:有理数除法法则.

  难点:

  (1)商的符号的确定.

  (2)0不能作除数的理解.

  四、教学手段

  现代课堂教学手段

  五、教学方法

  启发式教学

  六、教学过程

  (一)、从学生原有认知结构提出问题

  1.叙述有理数乘法法则.

  2.叙述有理数乘法的运算律.

  3.计算:

  (1)3×(-2); (2)-3×5; (3)(-2)×(-5).

  (二)、导入新课

  因为3×(-2)=-6,所以3x=-6时,可以解得x=-2;

  同样-3×5=-15,解简易方程-3x=-15,得x=5.

  在找x的值时,就是求一个数乘以3等于-6;或者是找一个数,使它乘以-3等于-15.已知一个因数的积,求另一个因数,就是在小学学过的除法,除法是乘法的逆运算.

  三、讲授新课

  1.有埋数的倒数

  0没有倒数,(0不能作除数,分母是0没有意义等概念在小学里是反复强调的.)

  提问:怎样求一个数的倒数?

  答:整数可以看成分母是1的分数,求分数的倒数是把这个数的分母与分子颠倒一下即可;求一个小数的倒数,可以先把这个小数化成分

  数再求倒数.

  什么性质

  所以我们说:乘积为1的两个数互为倒数,这个定义对有理数仍然适用.

  这里a≠0,同小学一样,在有理数范围内,0不能作除数,或者说0为分母时分数无意义.

  2.有理数除法法则

  利用有理数倒数的概念,我们进一步学习有理数除法.

  因为(-2)×(-4)=8,所以8÷(-4)=-2.

  由此,我们可以看出小学学过的除法法则仍适用于有理数除法,即

  除以一个数等于乘以这个数的倒数.

  0不能作除数.

  例1 计算:

  课堂练习

  (1)写出下列各数的倒数:

  (2)计算:

  3.有理数除法的符号法则

  观察上面的练习,引导学生总结出有理数除法的商的符号法则:

  两数相除,同号得正,异号得负.

  掌握符号法则,有的题就不必再将除数化成倒数再去乘了,可以确定符号后直接相除,这就是第二个有理数除法法则:

  两数相除,同号得正,异号得负,并把绝对值相除.

  0除以任何一个不为0的数,都得0.

  ≠0).利用除法法则可以化简分数.

  例2 化简下列分数:

  例3 计算:

  (4)(-7)÷3-20÷3(-7-20)÷3=(-27)÷3=-9.

  (四)、小结

  1.指导学生看书,重点是除法法则.

  2.引导学生归纳有理数除法的一般步骤:(1)确定商的符号;(2)把除数化为它的倒数;(3)利用乘法计算结果.

  七、练习设计

  习题2.12 1、2、3、4、5、6题

  八、板书设计

  §2.9有理数的除法

  (一)知识回顾 (三)例题解析 (五)课堂小结

  例1、例2

  (二)观察发现 (四)课堂练习 练习设计

  ,七年级数学上册北师大版2.9有理数的除法教案

因篇幅问题不能全部显示,请点此查看更多更全内容