您的当前位置:首页正文

一元一次不等式和它的解法

2024-04-21 来源:好走旅游网

  一、教学目标 :

  (一)知识与能力目标:(课件第2张)

  1.体会解不等式的步骤,体会比较、转化的作用。

  2.学生理解、巩固一元一次不等式的解法.

  3.用数轴表示解集,加深对数形结合思想的进一步理解和掌握。

  4.在解决实际问题中能够体会将文字语言转化成数学语言,学会用

  数学语言表示实际的数量关系。

  (二)过程与方法目标:

  1.介绍一元一次不等式的概念。

  2.通过对一元一次方程的解法的复习和对不等式性质的利用,导入  

  对解不等式的讨论。

  3.学生体会通过综合利用不等式的概念和基本性质解不等式的

  方法。

  4.学生将文字表达转化为数学语言,从而解决实际问题。

  5.练习巩固,将本节和上节内容联系起来。

  (三)情感、态度与价值目标:(课件第3张)

  1.在教学过程 中,学生体会数学中的比较和转化思想。

  2.通过类比一元一次方程的解法,从而更好的掌握一元一次不等式

  的解法,树立辩证统一思想。

  3.通过学生的讨论,学生进一步体会集体的作用,培养其集体合作

  的精神。

  4.通过本节的学习,学生体会不等式解集的奇异的数学美。

  二、教学重、难点

  1.掌握一元一次不等式的解法。

  2.掌握解一元一次不等式的阶梯步骤,并能准确求出解集。

  3.能将文字叙述转化为数学语言,从而完成对应用问题的解决。

  三、教学突破

  教材中没有给出解法的一般步骤,所以在教学中要注意让学生经

  历将所给的不等式转化为简单不等式的过程,并通过学生的讨论交流使

  学生经历知识的形成和巩固过程。在解不等式的过程中,与上节课联系

  起来,重视将解集表示在数轴上,从而指导学生体会用数形结合的方法

  解决问题。在研究中,鼓励学生用多种方法求解,从而锻炼他们活跃的

  思维。                                                  

  四、教 具:计算机辅助教学.

  五、教学流程:

  (一)、复习:

  教学环节

  

  

  

  导

  入

  新

  课

  1.  给出方程:(x+4)/3=(3x-1)/2,抽学生演算。(注意步骤)

  2.学生回忆不等式的性质,并说出解不等式的关键在哪里。

  3.  让学生举一些不等式的例子。在学生归纳出一元一次不等式的概念后,据情况点评。

  4.  新课导入  :通过上节课的学习,我们已经掌握了解简单不等式的方法。这节课我们来共同探讨解一元一次不等式的方法。

  1.学生练习,并说出解一元一次方程的步骤。

  2.认真思考,用自己的语言描述不等式的性质,说出解不等式的关键在于将不等式化为x≤a或x≥a的形式。出示课件第2页)

  3.举出不等式的例子,从中找出一元一次不等式的例子,归纳出一元一次不等式的概念。

  4.明确本课目标,进入对新课的学习。

  1.  复习解一元一次方程的解法和步骤。

  2.让学生回顾性质,以加强对性质的理解、掌握。

  3.运用类比思维

  4.自然过度,出示课件第3、4

  (二)、新授:

  教学环节

  

  

  

  探

  究

  一

  元

  一

  次

  不

  等

  式

  的

  解

  法

  1、  学生观察课本第61页例3  ,教师说明:解不等式就是利用不等式的三条基本性质对不等式进行变形的过程。提醒学生注意步骤。

  2.  分析学生的解答,提醒学生在解不等式中常见的错误:不等式两边同乘(除)同一个负数不等号方向要改变。

  3.  激励学生完成对(2) 解答,并找学生上讲台演示。

  4.强调在数轴上表示解集时的关键(出示课件第8页)

  5.出示练习(出示课件第9页)

  6.鼓励学生讨论课本第61页的例4  。提示学生:首先将简单的文字表达转化成数学语言。(出示课件第10页)

  7.指导学生归纳步骤。

  8.补充适当的练习,以巩固学生所学。(出示课件第12页)

  1.       类比解一元一次方程,仔细观察,理解用不等式的性质(3)解不等式的原理,并掌握用数轴表示不等式的解的方法。

  2.学生类比解一元一次方程的步骤

  与解一元一次不等式的一般步骤,同时完成练习。(出示课件第6页)

  3.完成例3(2):2(5x+3)≤x-3(1-2x)的解答。教师提示,组内讨论后,检查自己的解答过程,弥补不足,进一步体会解一元一次不等式的方法。

  4.理解、体会在数轴上表示解集的方法和关键。

  5.学生组内讨论完成。

  6.认真完成对例题的解答,在教师的提示下找到不等量关系,列出不等式:(x+4)/3-(3x-1)/2>1,并求解。.

  7.组内讨论并归纳后,看教师所出示的课件。(出示课件第11页)

  8.认真完成练习。

  1.电脑逐步演示,让学生从演示过程中理解不等式的解法。(出示课件第5张)

  2.巩固对一般解法的理解、掌握。

  3.通过类比归纳,提高学生的自学能力。(出示课件第7)以订正学生解答。

  4.让学生明白不等式的解集是一个范围,而方程的解是一个值。

  5.培养学生的扩展能力。

  6.类比一元一次方程的解法以加深对一元一次不等式解法的理解。

  7.通过动手、动脑使所学知识得到巩固。

  8.巩固所学。

  (三)、小结与巩固:

  教学环节

  

  

  

  小

  结

  与

  巩

  固

  1.引导学生对本课知识进行归纳。

  2.学生完成后(出示课件第13、14页)

  3.练习与巩固。

  1.学生组内讨论小结,组长帮助组员对知识巩固、提升。

  2.学生加强理解。

  3.完成练习:书63页第4题,第5(2、4)题。

  1.培养学生总结、归纳的能力。

  2.点拨学生对知识的理解与掌握。

  3.巩固本课所学。

因篇幅问题不能全部显示,请点此查看更多更全内容