您的当前位置:首页正文

浙教版数学七年级上知识点总结收集

2021-11-13 来源:好走旅游网
浙教版数学七年级上知识点总结

第一章 有理数及其运算

正整数(如:1,2,3)整数零(0)负整数(如:1,2,3)有理数11正分数(如:,,5.3,3.8)2311分数负分数(如:,,2.3,4.8)231.整数:包含正整数和负整数,分数包含正分数和负分数。正整数和正分数通称为正数,负整数和负分数通称为负

数。正整数和负整数通称为自然数

2.正数:都比0大,负数比0小,0既不是正数也不是负数。

正整数、0、负整数、正分数、负分数这样的数称为有理数。 数轴的三要素:原点、正方向、单位长度(三者缺一不可)。

任何一个有理数,都可以用数轴上的一个点来表示。(反过来,不能说数轴上所有的点都表示有理数)

3.相反数:只有符号不同的两个数互为相反数,a和-a互为相反数,0的相反数是0。

在任意的数前面添上“-”号,就表示原来的数的相反数。

在数轴上,表示互为相反数的两个点,位于原点的侧,且到原点的距离相等。

数轴上两点表示的数,右边的总比左边的大。正数在原点的右边,负数在原点的左边。

4.绝对值:数轴上一个数所对应的点与原点的距离叫做该数的绝对值,用“| |”表示。

正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0。

a(a0)a(a0)|a|0(a0) 或 |a|

a(a0)a(a0)越来越大 -3 -2 -1 0 1 2 3 即:当a是正数时,aa;当a是负数时,aa;当a=0时,a0

5.绝对值的性质:除0外,绝对值为一正数的数有两个,它们互为相反数;

互为相反数的两数(除0外)的绝对值相等; 任何数的绝对值总是非负数,即|a|≥0 ①对任何有理数a,都有|a|≥0 ②若|a|=0,则|a|=0,反之亦然 ③若|a|=b,则a=±b

第1页

④对任何有理数a,都有|a|=|-a|

6.比较两个负数的大小,绝对值大的反而小。比较两个负数的大小的步骤如下:

①先求出两个数负数的绝对值; ②比较两个绝对值的大小;

③根据“两个负数,绝对值大的反而小”做出正确的判断。

7.两个负数比较大小,绝对值大的反而小。 8.数轴上的两个点表示的数,右边的总比左边的大。

第二章 有理数的运算

1.有理数加法法则:·同号两个数相加,取相同的符号,并把绝对值相加。

·异号的两个数相加,绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小

的绝对值。互为相反数的两数相加得0.

·一个数同0相加仍得这个数 2.灵活运用运算律,使用运算简化,通常有下列规律:

①互为相反的两个数,可以先相加; ②符号相同的数,可以先相加; ③分母相同的数,可以先相加;

④几个数相加能得到整数,可以先相加。

3.加法交换律:abba

4.加法结合律:(ab)ca(bc)

5.有理数减法法则:减去一个数等于加上这个数的相反数。

6.有理数乘法法则:两数相乘,同号得正,异号得负,绝对值相乘。任何数与0相乘积仍得0。 7.有理数减法运算时注意两“变”:①改变运算符号;

②改变减数的性质符号(变为相反数)

8.有理数减法运算时注意一个“不变”:被减数与减数的位置不能变换,也就是说,减法没有交换律。

有理数的加减法混合运算的步骤:①写成省略加号的代数和。在一个算式中,若有减法,应由有理数的减法法则

转化为加法,然后再省略加号和括号; ②利用加法则,加法交换律、结合律简化计算。

(注意:减去一个数等于加上这个数的相反数,当有减法统一成加法时,减数应变成它本身的相反数。) 9.倒数:如果两个数互为倒数,则它们的乘积为1。(如:-2与

135 、 与…等) 25310.有理数乘法法则: ①两数相乘,同号得正,异号得负,绝对值相乘。

第2页

②任何数与0相乘,积仍为0。

11.乘法交换律:abba 12.乘法结合律:(ab)ca(bc) 13.乘法分配律:(ab)cacbc

乘法的交换律、结合律、分配律在有理数运算中同样适用。

14.有理数乘法运算步骤:①先确定积的符号;

②求出各因数的绝对值的积。

乘积为1的两个有理数互为倒数。注意:

①零没有倒数

②求分数的倒数,就是把分数的分子分母颠倒位置。一个带分数要先化成假分数。 ③正数的倒数是正数,负数的倒数是负数。

15.有理数除法法则:·除以一个不等于0的数,等于乘这个数的倒数。

·两个有理数相除,同号得正,异号得负,绝对值相除。0除以任何数都得0,且0不能作除数,否则无意义。

16.有理数的乘方:求n个相同因数a的积的运算叫做乘方,乘方的结果叫做幂。

nn个anaaaaan指数 底数

幂 在a中a叫做底数,n叫做指数,a读作a的n次幂(或a的n次方)。 注意:①一个数可以看作是本身的一次方,如5=51;

②当底数是负数或分数时,要先用括号将底数括上,再在右上角写指数。 17.乘方的运算性质:

①正数的任何次幂都是正数;

②负数的奇次幂是负数,负数的偶次幂是正数; ③任何数的偶数次幂都是非负数;

④1的任何次幂都得1,0的任何次幂都得0; ⑤-1的偶次幂得1;-1的奇次幂得-1;

⑥在运算过程中,首先要确定幂的符号,然后再计算幂的绝对值。 18.有理数混合运算法则:①先算乘方,再算乘除,最后算加减。

②如果有括号,先算括号里面的。

第3页

19.混合运算顺序:· 先算乘方,再乘除,后加减;

· 同级运算,从左到右进行;

· 如有括号,先算括号内的运算,按小括号、中括号、大括号依次进行。 20.近似数和有效数字:

与实际相符的数,叫做准确数 与实际接近的数,叫近似数

21.有效数字:一般地,一个近似数四舍五入到哪一位,就说这个近似数精确到哪一位这时,从左边第一个非零数

字起到精确到那一位数字止,所有的数字

第三章 实数

1.一般地如果一个数的平方根等于a,那么这个数叫做a的平方根,也叫a的二次方根.

一个正数有正负两个平方根,它们互为相反数;0的平方根是0;负数没有平方根. 正数的平方根称为算数平方根. 2 .实数定义:有理数与无理数统称为实数。

3.实数的分类: 无理数:无限不循环小数叫无理数。

有理数:整数和分数统称有理数。 无理数定义:

即非有理数之实数,不能写作两整数之比。若将它写成小数形式,小数点之后的数字有无限多个,并且不会循环。 常见的无理数有大部分的平方根、π和e(其中后两者同时为超越数)等。 无理数是无限不循环小数。如圆周率π、

等。

无理数性质:

无限不循环的小数就是无理数 。换句话说,就是不可以化为整数或者整数比的数 性质1 无理数加(减)无理数既可以是无理数又可以是有理数 性质2 无理数乘(除)无理数既可以是无理数又可以是有理数 性质3 无理数加(减)有理数一定是无理数 性质4 无理数乘(除)一个非0有理数一定是无理数

无理数与有理数的区别:

1、把有理数和无理数都写成小数形式时,有理数能写成有限小数和无限循环小数,

比如:4=4.0,=0.8,=0.33333……

第4页

而无理数只能写成无限不循环小数, 比如:

=1.414213562…………

根据这一点,人们把无理数定义为无限不循环小数;

2、所有的有理数都可以写成两个整数之比,而无理数不能。根据这一点,有人建议给无理数摘掉,把有理数改叫为“比数”,把无理数改叫为“非比数”。

无理数的识别:

判断一个数是不是无理数,关键就看它能不能写出无限不循环小数,而把无理数写成无限不循环小数,不但麻烦,而且还是我们利用现有知识无法解决的难题。 初中常见的无理数有三种类型:

(1)含根号且开方开不尽的方根,但切不可认为带根号的数都是无理数; (2)化简后含π的式子; (3)不循环的无限小数。

掌握常见无理数的类型有助于识别无理数。

4.实数的大小比较:用数轴表示数,右边的数总比左边的数大:正数>0>负数 ( 1 ) 差值比较法:>0>,=0,<0<

(2)商值比较法:若为两正数,则>>;<< (3)绝对值比较法:若为两负数,则><<>

(4)两数平方法:如实数与数轴上的点一一对应。平面直角坐标系中的点与有序实数对之间一一对应。 数a的相反数是-a

一般地如果一个数的立方根等于a,那么这个数叫做a的立方根,也叫a的三次方根

求一个数的立方根的运算,叫做开立方.

一个正数有一个立方根, 一个负数有一个立方根;0的立方根是0.

在实数运算时,有理数的运算法则及运算性质同样适用。先算乘方和开平,再算乘除,最后算加减,如果遇到括号,则先进行括号里的运算。

规律: 正数的平方根中被开方数大的较大。正数的立方根中被开方数大的较大。 被开方数相同时,开方的次数越大结果越小。

第5页

第四章 代数式

1.代数式的概念:

用运算符号(加、减、乘除、乘方、开方等)把数与表示数的字母连接而成的式子叫做代数式。单独...

的一个数或一个字母也是代数式。

注意:①代数式中除了含有数、字母和运算符号外,还可以有括号;

②代数式中不含有“=、>、<、≠”等符号。等式和不等式都不是代数式,但等号和不等号两边的式子一般都是代数式;

③代数式中的字母所表示的数必须要使这个代数式有意义,是实际问题的要符合实际问题的意义。

2.代数式的书写格式:

①代数式中出现乘号,通常省略不写,如vt;.. ②数字与字母相乘时,数字应写在字母前面,如4a;

③带分数与字母相乘时,应先把带分数化成假分数后与字母相乘,如2a应写作④数字与数字相乘,一般仍用“×”号,即“×”号不省略;

⑤在代数式中出现除法运算时,一般按照分数的写法来写,如4÷(a-4)应写作分数线具有“÷”号和括号的双重作用。

⑥在表示和(或)差的代差的代数式后有单位名称的,则必须把代数式括起来,再将单位名称写

在式子的后面,如(ab)平方米

3.代数式的系数:

代数式中的数字中的数字因数叫做代数式的系数。如3x,4y的系数分别为3,4。 ...... 注意:①单个字母的系数是1,如a的系数是1;

②只含字母因数的代数式的系数是1或-1,如-ab的系数是-1。a3b的系数是1

4.代数式的项:代数式6x22x7表示6x2、-2x、-7的和,6x2、-2x、-7是它的项,其中把不含字母的项叫做常数

注意:在交待某一项时,应与前面的符号一起交待。 5.单项式:由数与字母的乘积组成的式子叫做单项式。 6.系数:单项式前面的数字因数叫做这个单项式的系数。

7.单项式的次数:一个单项式中,所有字母的指数的和叫做这个单项式的次数。 8.多项式:几个单项式的和叫做多项式。其中,每个单项式叫做多项式的项,不含字母的

项叫做常数项。

9.多项式的次数:多项式里次数最高项的次数,叫做这个多项式的次数。

22137a; 34;注意:a4第6页

10.整式:单项式与多项式统称整式。

11.同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项。

注意:①判断几个代数式是否是同类项有两个条件:a.所含字母相同;b.相同字母的指数也相同。这两个条件

缺一不可;

②同类项与系数无关,与字母的排列顺序无关;

③几个常数项也是同类项。

12.合并同类项:把多项式中的同类项合成一项,叫做合并同类项。

合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变。 ①合并同类项的理论根据是逆用乘法分配律;

②合并同类项的法则是把同类项的系数相加,所得结果作为系数,字母和字母的指数不变。

注意:

①如果两个同类项的系数互为相反数,合并同类项后结果为0; ②不是同类项的不能合并,不能合并的项,在每步运算中都要写上; ③只要不再有同类项,就是最后结果,结果还是代数式。

13.去括号时符号变化规律:

如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号不变; 如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。 14.根据分配律去括号:

括号前面是“+”号看成+1,括号前面是“-”号看成-1,根据乘法的分配律用+1或-1去乘括号里的每一项以达

到去括号的目的。 注意:

①去括号时,要连同括号前面的符号一起去掉; ②去括号时,首先要弄清楚括号前是“+”号还是“-”号; ③改变符号时,各项都变号;不改变符号时,各项都不变号。

一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项。

第五章 一元一次方程

1.含有未知数的等式叫做方程,使方程左右两边的值都相等的未知数的值叫做方程的解。

只含有一个未知数,未知数的次数是1,这样的方程叫做一元一次方程。

运用方程解决问题:(1)设未知数。(2)找出相等的数量关系,(3)根据相等关系列方

程,解决问题。

第7页

2.等式的性质:1、等式两边加(或减)同一个数(或式子),结果仍相等。 如果ab,那么acbc

2、等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。

如果ab,那么acbc

ab

如果ab (c0),那么cc3.移项:把等式一边的某项变号后移到另一边,叫做移项

4.解方程步骤:解一元一次方程一般要去分母、去括号、移项、合并同类项、未知数的系 5.数化为1等,最后得出xa的形式。

第六章 图形的初步认识

1. 线段、射线、直线

正确理解直线、射线、线段的概念以及它们的区别:

名称 直线 图形 lAB表示方法 直线AB(或BA) 端点 无端点 长度 无法度量 直线l 射线OM 线段AB(或BA) 1个 无法度量 射线 OMl线段 AB2个 线段l 可度量长度 经过两点有一条直线,并且只有一条直线。(两点确定一条直线). 2..比较线段的长短

线段公理:两点间线段最短;两之间线段的长度叫做这两点之间的距离. 比较线段长短的两种方法: ①圆规截取比较法; ②刻度尺度量比较法.

用刻度尺可以画出线段的中点,线段的和、差、倍、分; 用圆规可以画出线段的和、差、倍.

两点之间的所有连线中,线段最短。(两点间的线段长度,叫做这两点的距离) 两点之间线段的长度,叫做这两点之间的距离。 ........3角的度量与表示

角:有公共端点的两条射线组成的图形叫做角;

1 图3

A O B 图1

b 图2

β 图4 第8页

这个公共端点叫做角的顶点; 这两条射线叫做角的边. 角的表示法:角的符号为“∠”

①用三个字母表示,如图1所示∠AOB

图5 始边 终边 ②用一个字母表示,如图2所示∠b ③用一个数字表示,如图3所示∠1 ④用希腊字母表示,如图4所示∠β

4.角度数的换算:1°=60分,1′=60秒

角也可以看成是由一条射线绕着它的端点旋转而成的。如图5所示:

一条射线绕它的端点旋转,当终边和始边成一条直线时,所成的角叫做平角。如图6所示: ..终边继续旋转,当它又和始边重合时,所成的角叫做周角。如图7所示: ..

5.从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。 .....6.等角的补角相等,等角的余角相等

7.经过直线外一点,有且只有一条直线与这条直线平行。 8.如果两条直线都与第三条直线平行,那么这两条直线互相平行。 9.互相垂直的两条直线的交点叫做垂足。 ..

10.平面内,过一点有且只有一条直线与已知直线垂直。

11.如图8所示,过点C作直线AB的垂线,垂足为O点,线段CO的长度叫做点到直线的距离。 .C....AB.....

平角 图6

C 周角 图7 A 图8 O B 第9页

因篇幅问题不能全部显示,请点此查看更多更全内容