您的当前位置:首页正文

高一数学集合重要知识点总结

2021-03-25 来源:好走旅游网


高一数学集合重要知识点(一)

1、集合的含义:

“集合”这个词首先让我们想到的是上体育课或者开会时老师经常喊的“全体集合”。数学上的“集合”和这个意思是一样的,只不过一个是动词一个是名词而已。

所以集合的含义是:某些指定的对象集在一起就成为一个集合,简称集,其中每一个对象叫元素。比如高一二班集合,那么所有高一二班的同学就构成了一个集合,每一个同学就称为这个集合的元素。

2、集合的表示

通常用大写字母表示集合,用小写字母表示元素,如集合A={a,b,c}。a、b、c就是集合A中的元素,记作a∈A,相反,d不属于集合A,记作dA。

有一些特殊的集合需要记忆:

非负整数集(即自然数集)N正整数集N*或N+

整数集Z有理数集Q实数集R

集合的表示方法:列举法与描述法。

①列举法:{a,b,c……}

②描述法:将集合中的元素的公共属性描述出来。如{xR|x-3>2},{x|x-3>2},{(x,y)|y=x2+1}

③语言描述法:例:{不是直角三角形的三角形}

例:不等式x-3>2的解集是{xR|x-3>2}或{x|x-3>2}

强调:描述法表示集合应注意集合的代表元素

A={(x,y)|y=x2+3x+2}与B={y|y=x2+3x+2}不同。集合A中是数组元素(x,y),集合B中只有元素y。

3、集合的三个特性

(1)无序性

指集合中的元素排列没有顺序,如集合A={1,2},集合B={2,1},则集合A=B。

例题:集合A={1,2},B={a,b},若A=B,求a、b的值。

解:,A=B

注意:该题有两组解。

(2)互异性

指集合中的元素不能重复,A={2,2}只能表示为{2}

(3)确定性

集合的确定性是指组成集合的元素的性质必须明确,不允许有模棱两可、含混不清的情况。

高一数学集合重要知识点(二)

1.子集,A包含于B,有两种可能

(1)A是B的一部分,

(2)A与B是同一集合,A=B,A、B两集合中元素都相同。

反之:集合A不包含于集合B。

2.不含任何元素的集合叫做空集,记为Φ。Φ是任何集合的子集。

4、有n个元素的集合,含有2n个子集,2n-1个真子集,含有2n-2个非空真子

集。如A={1,2,3,4,5},则集合A有25=32个子集,25-1=31个真子集,25-2=30个非空真子集。

高一数学集合练习

1.已知集合A={1,a2},实数a不能取的值的集合是________.

【解析】 由互异性知a2≠1,即a≠±1,

故实数a不能取的值的集合是{1,-1}.

【答案】 {1,-1}

2.已知P={x|2

【解析】 用数轴分析可知a=6时,集合P中恰有3个元素3,4,5.

【答案】 6

3.选择适当的方法表示下列集合集.

(1)由方程x(x2-2x-3)=0的所有实数根组成的集合;

(2)大 于2且小于6的有理数;

(3)由直线y=-x+4上的横坐标和纵坐标都是自然数的点组成的集合.

【解析】 (1)方程的实数根为-1,0,3,故可以用列举法表示为{-1,0,3},当然也可以用描述法表示为{x|x(x2-2x-3)=0},有限集.

(2)由于大于2且小于6的有理数有无数个,故不能用列举法表示该集合,但可以用描述法表示该集合为{x∈Q|2

(3)用描述法表示该集合为

M={(x,y)|y=-x+4,x∈N,y∈N}或用列举法表示该集合为

{(0,4),(1,3),(2,2),(3,1),(4,0)}.

4.设A表示集合{a2+2a-3,2,3},B表示集合

{2,|a+3|},已知5∈A且5∉B,求a的值.

【解析】 因为5∈A,所以a2+2a-3=5,

解得a=2或a=-4.

当a=2时,|a+3|=5,不符合题意,应舍去.

因篇幅问题不能全部显示,请点此查看更多更全内容