一、选择题
1. 在△ABC中,角A,B,C所对的边分别是a,b,c,若
﹣
+1=0,则角B的度数是( )
A.60° B.120° C.150° D.60°或120°
2. 某班设计了一个八边形的班徽(如图),它由腰长为1,顶角为的四个等腰三角形,及其底边构成的正方形所组成,该八边形的面积为( )
A.2sin2cos2 B.sin3cos3 C. 3sin3cos1 D.2sincos1
2xy203. 若变量x,y满足约束条件x2y40,则目标函数z3x2y的最小值为( )
x10A.-5 B.-4 C.-2 D.3 4. 设有直线m、n和平面α、β,下列四个命题中,正确的是( ) A.若m∥α,n∥α,则m∥n B.若m⊂α,n⊂α,m∥β,n∥β,则α∥β C.若α⊥β,m⊂α,则m⊥β
D.若α⊥β,m⊥β,m⊄α,则m∥α
5. 已知函数f(x)是(﹣∞,0)∪(0,+∞)上的奇函数,且当x<0时,函数的部分图象如图所示,则不等式xf(x)<0的解集是( )
A.(﹣2,﹣1)∪(1,2) B.(﹣2,﹣1)∪(0,1)∪(2,+∞)
C.(﹣∞,﹣2)∪(﹣1,0)∪(1,2) D.(﹣∞,﹣2)∪(﹣1,0)∪(0,1)∪(2,+∞)
6. 已知一元二次不等式f(x)<0的解集为{x|x<﹣1或x>},则f(10x)>0的解集为( )
第 1 页,共 17 页
A.{x|x<﹣1或x>﹣lg2} B.{x|﹣1<x<﹣lg2} C.{x|x>﹣lg2} D.{x|x<﹣lg2}
ππφ
7. 函数f(x)=sin(ωx+φ)(ω>0,-≤φ≤)的部分图象如图所示,则的值为( )
22ω
1
A. 81C. 2
1B.
4D.1
8. 设偶函数f(x)满足f(x)=2x﹣4(x≥0),则{x|f(x﹣2)<0}=( ) A.{x|x<﹣2或x>4} B.{x|x<0或x>4} C.{x|x<0或x>6} D.{x|0<x<4}
9. 方程x11y1表示的曲线是( )
A.一个圆 B. 两个半圆 C.两个圆 D.半圆
2,且|a2b|23,|b|1,则|a|( ) 3A. B.3 C. D.
10.已知平面向量与的夹角为
11.若圆心坐标为2,1的圆在直线xy10上截得的弦长为22,则这个圆的方程是( ) A.x2y10 B.x2y14 C.x2y18 D.x2y116 12.若P是以F1,F2为焦点的椭圆tan∠PF1F2=A.
,则此椭圆的离心率为( ) B.
C.
D.
=1(a>b>0)上的一点,且
=0,
22222222二、填空题
13.设等差数列{an}的前n项和为Sn,若﹣1<a3<1,0<a6<3,则S9的取值范围是 .
14.【泰州中学2018届高三10月月考】设函数fx是奇函数fx的导函数,f10,当x0时,
xfxfx0,则使得fx0成立的x的取值范围是__________.
第 2 页,共 17 页
15.已知函数f(x)2tanx,则f()的值是_______,f(x)的最小正周期是______.
1tan2x3【命题意图】本题考查三角恒等变换,三角函数的性质等基础知识,意在考查运算求解能力.
x2y21有共同的焦点,且与椭圆相交,其中一个交点的坐标为 16.设某双曲线与椭圆
2736(15,4),则此双曲线的标准方程是 . 17.已知ab1,若logablogba10,abba,则ab= ▲ . 318.图中的三个直角三角形是一个体积为20的几何体的三视图,则h__________.
三、解答题
19.AA1C1C是边长为4的正方形.AB=3,BC=5.如图,在三棱柱ABC﹣A1B1C1中,平面ABC⊥平面AA1C1C,
(Ⅰ)求证:AA1⊥平面ABC;
(Ⅱ)求证二面角A1﹣BC1﹣B1的余弦值;
(Ⅲ)证明:在线段BC1上存在点D,使得AD⊥A1B,并求
的值.
第 3 页,共 17 页
20.(本题满分14分)已知两点P(0,1)与Q(0,1)是直角坐标平面内两定点,过曲线C上一点M(x,y)作y 轴的垂线,垂足为N,点E满足ME(1)求曲线C的方程;
(2)设直线l与曲线C交于A,B两点,坐标原点O到直线l的距离为
2MN,且QMPE0. 33,求AOB面积的最大值. 2【命题意图】本题考查向量的基本运算、轨迹的求法、直线与椭圆的位置关系,本题知识交汇性强,最值的求解有一定技巧性,同时还要注意特殊情形时三角形的面积.总之该题综合性强,难度大.
21.24.(本小题满分10分)选修4-5:不等式选讲. 已知函数f(x)=|x+1|+2|x-a2|(a∈R). (1)若函数f(x)的最小值为3,求a的值;
(2)在(1)的条件下,若直线y=m与函数y=f(x)的图象围成一个三角形,求m的范围,并求围成的三角形面积的最大值.
22.已知函数f(x)的定义域为{x|x≠kπ,k∈Z},且对定义域内的任意x,y都有f(x﹣y)=成立,且f(1)=1,当0<x<2时,f(x)>0. (1)证明:函数f(x)是奇函数;
(2)试求f(2),f(3)的值,并求出函数f(x)在[2,3]上的最值.
第 4 页,共 17 页
23.(本小题满分10分) 已知函数fxxax2.
(1)若a4求不等式fx6的解集;
(2)若fxx3的解集包含0,1,求实数的取值范围.
24.已知Sn为等差数列{an}的前n项和,且a4=7,S4=16. (1)求数列{an}的通项公式; (2)设bn=
,求数列{bn}的前n项和Tn.
第 5 页,共 17 页
洮北区第一高级中学2018-2019学年上学期高二数学12月月考试题含答案(参考答案) 一、选择题
1. 【答案】A
【解析】解:根据正弦定理有: =代入已知等式得:即
﹣1=
﹣,
+1=0,
,
整理得:2sinAcosB﹣cosBsinC=sinBcosC, 即2sinAcosB=sinBcosC+cosBsinC=sin(B+C), 又∵A+B+C=180°, ∴sin(B+C)=sinA, 可得2sinAcosB=sinA, ∵sinA≠0,
∴2cosB=1,即cosB=, 则B=60°. 故选:A.
【点评】此题考查了同角三角函数基本关系的运用,熟练掌握基本关系是解本题的关键.
2. 【答案】A 【解析】
试题分析:利用余弦定理求出正方形面积S11212-2cos22cos;利用三角形知识得出四个等腰三角形面积S24确答案为A.
考点:余弦定理和三角形面积的求解.
【方法点晴】本题是一道关于三角函数在几何中的应用的题目,掌握正余弦定理是解题的关键;首先根据三角
111sin2sin;故八边形面积SS1S22sin2cos2.故本题正21111sinsin求出个三角形的面积4S2sin;接下来利用余弦定理可求出正222222方形的边长的平方11-2cos,进而得到正方形的面积S111-2cos22cos,最后得到
形面积公式S答案.
3. 【答案】B 【解析】
第 6 页,共 17 页
31xz,直线系在可22行域内的两个临界点分别为A(0,2)和C(1,0),当直线过A点时,z3x2y224,当直线过C点时,z3x2y313,即的取值范围为[4,3],所以Z的最小值为4.故本题正确答案为B.
试题分析:根据不等式组作出可行域如图所示阴影部分,目标函数可转化直线系y考点:线性规划约束条件中关于最值的计算. 4. 【答案】D
【解析】解:A不对,由面面平行的判定定理知,m与n可能相交,也可能是异面直线;B不对,由面面平行的判定定理知少相交条件;
C不对,由面面垂直的性质定理知,m必须垂直交线; 故选:D.
5. 【答案】D
【解析】解:根据奇函数的图象关于原点对称,作出函数的图象,如图 则不等式xf(x)<0的解为:
或
解得:x∈(﹣∞,﹣2)∪(﹣1,0)∪(0,1)∪(2,+∞) 故选:D.
第 7 页,共 17 页
6. 【答案】D
【解析】解:由题意可知f(x)>0的解集为{x|﹣1<x<},
xx
故可得f(10)>0等价于﹣1<10<, x
由指数函数的值域为(0,+∞)一定有10>﹣1,
而10<可化为10<
x
x,即10<10﹣,
x
lg2
由指数函数的单调性可知:x<﹣lg2 故选:D
7. 【答案】
【解析】解析:选B.由图象知函数的周期T=2, 2π
∴ω==π,
2
1
即f(x)=sin(πx+φ),由f(-)=0得
4ππ-+φ=kπ,k∈Z,即φ=kπ+. 44πππ又-≤φ≤,∴当k=0时,φ=,
224φ1
则=,故选B. ω48. 【答案】D
【解析】解:∵偶函数f(x)=2x﹣4(x≥0),故它的图象 关于y轴对称,
且图象经过点(﹣2,0)、(0,﹣3),(2,0), 故f(x﹣2)的图象是把f(x)的图象向右平移2个 单位得到的,
故f(x﹣2)的图象经过点(0,0)、(2,﹣3),(4,0), 则由f(x﹣2)<0,可得 0<x<4, 故选:D.
第 8 页,共 17 页
【点评】本题主要考查指数不等式的解法,函数的图象的平移规律,属于中档题.
9. 【答案】A 【解析】
试题分析:由方程x11y1,两边平方得x1(1y1),即(x1)2(y1)21,所
2222以方程表示的轨迹为一个圆,故选A. 考点:曲线的方程. 10.【答案】C
考点:平面向量数量积的运算. 11.【答案】B 【解析】
考
点:圆的方程.1111] 12.【答案】A
第 9 页,共 17 页
【解析】解:∵∴
∵Rt△PF1F2中,∴∴
又∵根据椭圆的定义,得2a=PF1+PF2=3t ∴此椭圆的离心率为e=故选A
=
=
=
,设PF2=t,则PF1=2t
,即△PF1F2是P为直角顶点的直角三角形.
,
=2c,
=
【点评】本题给出椭圆的一个焦点三角形为直角三角形,根据一个内角的正切值,求椭圆的离心率,着重考查了椭圆的基本概念和简单几何性质,属于基础题.
二、填空题
13.【答案】 (﹣3,21) .
【解析】解:∵数列{an}是等差数列,
∴S9=9a1+36d=x(a1+2d)+y(a1+5d)=(x+y)a1+(2x+5y)d, 由待定系数法可得
∵﹣3<3a3<3,0<6a6<18, ∴两式相加即得﹣3<S9<21. ∴S9的取值范围是(﹣3,21). 故答案为:(﹣3,21).
【点评】本题考查了等差数列的通项公式和前n项和公式及其“待定系数法”等基础知识与基本技能方法,属于中档题.
14.【答案】,10,1
,解得x=3,y=6.
【解析】
15.【答案】3,.
第 10 页,共 17 页
xk2tanx2tan2xf()tan3【解析】∵f(x),∴,又∵,∴f(x)的定义域为221tanx331tan2x0k)(k,k),kZ,将f(x)的图象如下图画出,从而
244442可知其最小正周期为,故填:3,. (k,k)(k,16.【答案】【解析】
yx1 4522
x2y21的焦点在y轴上,且c236279,故焦点坐标为0,3由双曲试题分析:由题意可知椭圆
2736线的定义可得2a150432215043224,故a2,b2945,故所求双
y2x2y2x21.故答案为:1. 曲线的标准方程为4545考点:双曲线的简单性质;椭圆的简单性质. 17.【答案】43 【解析】
第 11 页,共 17 页
试题分析:因为ab1,所以logba1,又logablogba3101101logbalogba3或(舍),3logba33因此ab3,因为abba,所以b3bbb3bb3,b1b3,a33,ab43 考点:指对数式运算 18.【答案】 【解析】
试题分析:由三视图可知该几何体为三棱锥,其中侧棱VA底面ABC,且ABC为直角三角形,且
11AB5,VAh,AC6,所以三棱锥的体积为V56h5h20,解得h4.
32
考点:几何体的三视图与体积.
三、解答题
19.【答案】
【解析】(I)证明:∵AA1C1C是正方形,∴AA1⊥AC. 又∵平面ABC⊥平面AA1C1C,平面ABC∩平面AA1C1C=AC, ∴AA1⊥平面ABC.
(II)解:由AC=4,BC=5,AB=3.
222
∴AC+AB=BC,∴AB⊥AC.
建立如图所示的空间直角坐标系,则A1(0,0,4),B(0,3,0),B1(0,3,4),C1(4,0,4),
∴,,. 设平面A1BC1的法向量为
则
,平面B1BC1的法向量为
=(x2,y2,z2).
,令y1=4,解得x1=0,z1=3,∴
.
,令x2=3,解得y2=4,z2=0,∴
.
第 12 页,共 17 页
==
.
=
.
∴二面角A1﹣BC1﹣B1的余弦值为
(III)设点D的竖坐标为t,(0<t<4),在平面BCC1B1中作DE⊥BC于E,可得D ∴∵∴∴
.
=
,∴
,, ,解得t=
.
=(0,3,﹣4),
,
【点评】本题综合考查了线面垂直的判定与性质定理、面面垂直的性质定理、通过建立空间直角坐标系利用法向量求二面角的方法、向量垂直与数量积得关系等基础知识与基本方法,考查了空间想象能力、推理能力和计算能力.
20.【答案】
【解析】(1)依题意知N(0,y),∵ME2221MN(x,0)(x,0),∴E(x,y) 3333则QM(x,y1),PE(x,y1) …………2分
131x2y21 ∵QMPE0,∴xx(y1)(y1)0,即
33第 13 页,共 17 页
x2y21 …………4分 ∴曲线C的方程为3
21.【答案】
【解析】解:(1)f(x)=|x+1|+2|x-a2|
第 14 页,共 17 页
=-x+2a+1,-1<x<a, 3x-2a+1,x≥a,
2
2
2
2
-3x+2a2-1,x≤-1,
当x≤-1时,f(x)≥f(-1)=2a2+2, -1<x<a2,f(a2)<f(x)<f(-1), 即a2+1<f(x)<2a2+2, 当x≥a2,f(x)≥f(a2)=a2+1,
所以当x=a2时,f(x)min=a2+1,由题意得a2+1=3,∴a=±2. (2)当a=±2时,由(1)知f(x)= -3x+3,x≤-1,
-x+5,-1<x<2, 3x-3,x≥2,
由y=f(x)与y=m的图象知,当它们围成三角形时,m的范围为(3,6],当m=6时,围成的三角形面积
1
最大,此时面积为×|3-(-1)|×|6-3|=6.
2
22.【答案】
【解析】(1)证明:函数f(x)的定义域为{x|x≠kπ,k∈Z},关于原点对称. 又f(x﹣y)=
,
所以f(﹣x)=f[(1﹣x)﹣1]= = =
= = =,
第 15 页,共 17 页
故函数f(x)奇函数.
(2)令x=1,y=﹣1,则f(2)=f[1﹣(﹣1)]=令x=1,y=﹣2,则f(3)=f[1﹣(﹣2)]=∵f(x﹣2)=∴f(x﹣4)=则函数的周期是4.
先证明f(x)在[2,3]上单调递减,先证明当2<x<3时,f(x)<0, 设2<x<3,则0<x﹣2<1, 则f(x﹣2)=设2≤x1≤x2≤3,
则f(x1)<0,f(x2)<0,f(x2﹣x1)>0, 则f(x1)﹣f(x2)=∴f(x1)>f(x2),
即函数f(x)在[2,3]上为减函数,
则函数f(x)在[2,3]上的最大值为f(2)=0,最小值为f(3)=﹣1.
【点评】本题主要考查了函数奇偶性的判断,以及函数的最值及其几何意义等有关知识,综合性较强,难度较大.
23.【答案】(1),0【解析】
,
,即f(x)=﹣
<0,
=
,
,
=
=
=
,
,
6,;(2)1,0.
试题分析:(1)当a4时,fx6,利用零点分段法将表达式分成三种情况,分别解不等式组,求得解集为,0试题解析:
恒成立,即1a0.
6,;(2)fxx3等价于xa2x3x,即1xa1x在0,1上
x2x42x4a4(1)当时,fx6,即或或,
4x2x64xx26x4x26解得x0或x6,不等式的解集为,06,;
第 16 页,共 17 页
考
点:不等式选讲. 24.【答案】
【解析】解:(1)设等差数列{an}的公差为d,依题意得解得:a1=1,d=2an=2n﹣1… (2)由①得∴∴
…(12分)
…(7分)
…(11分) …(2分)
【点评】本题考查等差数列的通项公式的求法及数列的求和,突出考查裂项法求和的应用,属于中档题.
第 17 页,共 17 页
因篇幅问题不能全部显示,请点此查看更多更全内容