PSMGACDCDCACGRID
Figure 1 直驱式永磁同步风力发电机 1. 系统的基本组成:
直驱式同步风力发电系统主要采用如下结构组成:风力机(这里概括为:叶片、轮毂、导航罩)、变桨机构、机舱、塔筒、偏航机构、永磁同步发电机、风速仪、风向标、变流器、风机总控系统等组成。其中全功率变流器又可分为发电机侧整流器、直流环节和电网侧逆变器。就空间位置而言,变流器和风机总控系统一般放在塔筒底部,其余主要部件均位于塔顶。 2.
工作原理:
系统中能量传递和转换路径为:风力机把捕获的流动空气的动能转换为机械能,直驱系统中的永磁同步发电机把风力机传递的机械能转换为频率和电压随风速变化而变化的不控电能,变流器把不控的电能转换为频率和电压与电网同步的可控电能并馈入电网,从而最终实现直驱系统的发电并网控制。 3.
控制模式:
风力发电机组的控制系统是综合性控制系统。它不仅要监视电网、风况和机组运行参数,对机组运行进行控制。而且还要根据风速与风向的变化,对机组进行优化控制,以提高机组的运行效率和发电量。
风力发电控制系统的基本目标分为三个层次:
分别为保证风力发电机组安全可靠运行,获取最大能量,提供良好的电力质量。
控制系统主要包括各种传感器、变距系统、运行主控制器、功率输出单元、无功补偿单元、并网控制单元、安全保护单元、通讯接口电路、监控单元。
具体控制内容有:信号的数据采集、处理,变桨控制、转速控制、自动最大功率点跟踪控制、功率因数控制、偏航控制、自动解缆、并网和解列控制、停机制动控制、安全保护系统、就地监控、远程监控。
一、系统运行时控制: 1、 偏航系统控制:
偏航系统的控制包括三个方面:自动对风、自动解缆和风轮保护。 1) 自动对风
正常运行时偏航控制系统自动对风,即当机舱偏离风向一定角度时,控制系统发出向左或向右调向的指令,机舱开始对风,当达到允许的误差范围内时,自动对风停止。 2) 自动解缆
当机舱向同一方向累计偏转2~3圈后,若此时风速小于风电机组启动风速且无功率输出,则停机,控制系统使机舱反方向旋转2~3圈解绕;若此时机组有功率输出,则暂不自动解绕;若机舱继续向同一方向偏转累计达3圈时,则控制停机,解绕;若因故障自动解绕未成功,在扭缆达4圈时,扭缆机械开关将动作,此时报告扭缆故障,自动停机,等待人工解缆操作。 3) 风轮保护
当产生特大强风时,停机并释放叶尖阻尼板,桨距调到最大,偏航90°背风,以保护风轮免受损坏。 2、 变桨距系统控制
变桨系统的控制包括三个方面:启动状态(转速控制)、欠功率状态(不控制)和额定功率状态(功率控制)。 1) 起动状态
桨叶在静止时,节距角为90°,这时气流对桨叶不产生转矩,整个桨叶实际上是一块阻尼板。当风速达到启动风速时,桨叶向0°方向转动,知道气流对桨叶产生一定的攻角,风轮开始起动。在发电机并入电网以前,变桨距系统的节距给定值由发电机转速信号控制。转速控制器按照一定的速度上升斜率给出速度参考值。为确保并网平稳,对电网产生的冲击尽可能小,变桨距系统可以在一定时间内,保持发电机的转速在同步转速附近。 2) 欠功率状态
当风速低于额定风速时,发电机在额定功率以下工作,此时变桨距系统不加控制,节距角为0,以实现最大功率跟踪。 3) 额定功率状态
当风速达到或超过额定风速后,风力发电机进入额定功率状态。变桨距系统根据发电机的功率信号进行控制。 3、 机侧变流器的控制
永磁同步发电机侧变流器的控制目标是:
1) 将永磁同步发电机发出的频率和电压幅值变化无序的交流电整流成直流电
2) 控制风力机转速,实现最大风能捕获 3) 控制与永磁同步发电机间的无功交换。 4、 网侧变流器的控制
网侧变流器可以工作在整流和逆变状态,一般情况下在单位功率因数逆变运行。此时,能量由直流侧流向电源,且无功功率为零。 网侧逆变器控制目标是:
1) 将直流电逆变为与电网频率、幅值相同的交流电,保证电网侧电流正弦,减少谐波对电网的污染并维持直流侧电压恒定,提高发电效率。
2) 实现对电网发送有功功率和无功功率的控制。 二、制动控制 制动程序一般可分为3级。当一级制动程序执行超时,系统会自动跳到下一级制动程序。3级制动分别为正常制动、快速制动和紧急制动。正常制动、快速制动、紧急制动的区别主要在于变桨距速度、脱网控制以及辅助措施。不同的变桨距速度对塔架的冲击不同,速度越快,对风机的冲击越大。正常制动、快速制动不会马上脱网,通过向90°顺桨方向变桨距使转速下降到临界并网转速后脱网,这样可以防止风机因为突然失去负载而引起的超速事故。紧急制动中,除通过快速变桨制动,还可启动依靠液压刹车盘的辅助机械制动。如紧急制动依然超时,则启动避风制动,即控制器在紧急制动状态依然无法停机的情况下,通过偏航使风机轴向与风向呈90°来实现气动停机。制动控制功能结构如图表1所示。 制动控制 正常制动 低速变桨至90° 转速降至脱网转速时脱网 快速制动 中速变桨至90° 转速降至脱网转速时脱网 紧急制动 高速变桨至90° 是否断开安全链 是否启用机械刹车制动 紧急制动是否超时 断开安全链 启动避风制动 三、安全保护控制 图表 1 制动功能结构图 控制系统是风力发电机组核心部件,是风力发电机组安全运行根本保证,所以为提高风力发电机组运行安全性,必须认真考虑控制系统的安全性和可靠性问题。
1、 雷电安全保护
需要在风电场整体设计上考虑,采取多层防护措施。 2、 过压过流保护
当装置元件遭到瞬间高压冲击和电流过流时所进行的保护。通常采用隔离、限压、高压瞬态吸收元件、过流保护器等。
3、 震动保护
机组应设有三级震动频率保护,震动球开关、震动频率上限。当开关动作时,控制系统将分级进行处理。
4、 开机关机保护
设计机组开机正常顺序控制,确保机组安全。在小风、大风、故障时控制机组按顺序停机。
5、 电网掉电保护
风力发电机组离开电网的支持是无法工作的,一旦有突发故障而停电时,控制器的计算机由于失电会立即终止运行,并失去对风机的控制,控制叶尖气动刹车和机械刹车的电磁阀就会立即打开,液压系统会失去压力,制动系统动作,执行紧急停机。紧急停机意味着在极短的时间内,风机的制动系统将风机叶轮转数由运行时的额定转速变为零。大型的机组在极短的时间内完成制动过程,将会对机组的制动系统、齿轮箱、主轴和叶片以及塔架产生强烈的冲击。紧急停机的设置是为了在出现紧急情况时保护风电机组安全的。然而,电网故障无须紧急停机;突然停电往往出现在天气恶劣、风力较强时,紧急停机将会对风机的寿命造成一定影响。另外风机主控制计算机突然失电就无法将风机停机前的各项状态参数及时存储下来,这样就不利于迅速对风机发生的故障做出判断和处理。针对上述情况,可以在控制系统电源中加设在线UPS后备电源,这样当电网突然停电时,UPS自动投入,为风电机控制系统提供电力,使风电控制系统按正常程序完成停机过程。
6、 紧急停机安全链保护
系统的安全链是独立于计算机系统的硬件保护措施,即使控制系统发生异常,也不会影响安全链的正常动作。安全链是将可能对风力发电机造成致命伤害的超常故障串联成一个回路,当安全链动作后将引起紧急停机,执行机构失电,机组瞬间脱网,控制系统在3秒左右,将机组平稳停止,从而最大限度地保证机组的安全。发生下列故障时将触发安全链:叶轮过速、机组部件损坏、机组振动、扭缆、电源失电、紧急停机按钮动作。
7、 微机控制器抗干扰保护
风电场控制系统的主要干扰源有:工业干扰:如高压交流电场、静电场、电弧、可控硅等,自然界干扰:雷电冲击、各种静电放电、磁爆等;高频干扰:微波通讯。无线电信号、雷达等。这些干扰通过直接辐射或由某些电气回路传导进入的方式进入到控制系统,干扰控制系统工作的稳定性。从干扰的种类来看,可分为交变脉冲干扰和单脉冲干扰两种,它们均以电或磁的形式干扰控制系统,以保证设备的可靠性。
8、 接地保护
接地保护是非常重要的环节。良好的接地将确保控制系统免受不必要的损害。在整个控制系统中通常采用以下几种接地方式,来达到安全保护的目的。工作接地、保护接地、防雷接地、防静电接地、屏蔽接地。接地的主要作用一方面是为保证电器设备安全运行,另一方面是防止设备绝缘被破坏时可能带电,以致危及人身安全。同时能使保护装置迅速切断故障回路,防止故障扩大。
9、 监控功能
风电场计算机监控系统分中央监控系统和远程监控系统,系统主要由监控计算机、数据传输介质、信号转换模块、监控软件等组成。中央监控系统的功能是:对风力发电机进行实时监测、远程控制、故障报警、数据记录、数据报表、曲线生成等。
因篇幅问题不能全部显示,请点此查看更多更全内容