您的当前位置:首页正文

高等数学积分公式和微积分公式大全

2022-02-07 来源:好走旅游网
常 用 积 分 公 式

(一)含有axb的积分(a0) 1.

dx1=axbalnaxbC

2.(axb)dx=

1(axb)1C(1)

a(1)3.

x1=dxaxba2(axbblnaxb)C

x211dx=3(axb)22b(axb)b2lnaxbC 4.a2axb5.

1axbdx=x(axb)blnxC

6.

1aaxbdxlnC =22bxbxx(axb)7.

x1bdx=(lnaxb)C (axb)2a2axbx21b2dx=3(axb2blnaxb)C 8.2(axb)aaxb9.

11axbdxlnC =

xx(axb)2b(axb)b2(二)含有axb的积分

23(axb)C 3a2311.xaxbdx=(3ax2b)(axb)C 215a22(15a2x212abx8b2)(axb)3C 12.xaxbdx=3105a10.

axbdx=13.

x2dx=2(ax2b)axbC

3aaxb14.

x22dx=(3a2x24abx8b2)axbC 315aaxbdx15.=xaxb16.

1lnbaxbbC(b0)axbb

2axbarctanC(b0)bbx2dxaxbadx= bx2bxaxbaxb17.

axbdxdx=2axbb xxaxbaxbaxbadxdx= x2x2xaxb2218.

(三)含有xa的积分 19.

dx1x=arctanC x2a2aadxx2n3dx=(x2a2)n2(n1)a2(x2a2)n12(n1)a2(x2a2)n1 1xadxln=x2a22axaC

220.

21.

(四)含有axb(a0)的积分

1arctandxab22.2=axb1ln2ab23.

axCb(b0)

axbC(b0)axbx12dx=ax2b2alnaxbC

24.x2ax2bdx=xabadxax2b

.dxx(ax2b)=1x2252blnax2bC

26.

dx1ax2(ax2b)=bxdxbax2b

27.dxaax2b1x3(ax2b)=2b2lnx22bx2C 28.

dxx(ax2b)2=2b(ax2b)1dx2bax2b

(五)含有ax2bxc(a0)的积分

22ax2arctanb29.dx4acb4acb2Cax2bxc=12axbb2ln4acCb24ac2axbb24ac30.

x1bdxax2bxcdx=2alnax2bxc2aax2bxc(六)含有x2a2(a0)的积分 31.

dxx2a2=arshxaC1=ln(xx2a2)C 32.

dxx(x2a2)3=a2x2a2C

33.

xx2a2dx=x2a2C

34.

x1(x2a2)3dx=x2a2C

(b24ac)(b24ac)

35.

x2a22xaln(xx2a2)C dx=22x2a2x236.

x2(x2a2)3dxdx=xx2a2ln(xx2a2)C

1x2a2aC 37.=ln22axxxa38.

x2x2a2C =222axxadx39.

x2a22xaln(xx2a2)C xadx=2222x342232222(xa)dx=(2x5a)xaaln(xx2a2)C 8812241.xxadx=(x2a2)3C

340.42.x2xa42222xadx=(2xa)xaln(xx2a2)C

882243.

x2a2x2a2a22dx=xaalnC xxx2a2x2a2dx=ln(xx2a2)C 2xx44.

(七)含有x2a2(a0)的积分 45.

dxx2a2=

xxarchC1=lnxx2a2C xa=46.

dx(xa)xx2a2223xa2xa22C

47.

dx=x2a2C

48.

x(xa)223dx=1xa22C

49.

xx2a22xalnxx2a2C dx=22x2a2x250.

x2(x2a2)3dxx2a2dxdx=xx2a2lnxx2a2C

51.=1aarccosC ax52.

x2x2a2C =222axxa2253.

x2a22xalnxx2a2C xadx=22x34223222222(xa)dx=(2x5a)xaalnxxaC 8812255.xxadx=(x2a2)3C

354.56.x2xa42222xadx=(2xa)xalnxx2a2C

882257.

ax2a2dx=x2a2aarccosC

xxx2a2x2a222dxlnxxaC =2xx58.

(八)含有a2x2(a0)的积分 59.

dxa2x2=arcsinxC axC

60.

dx(ax)223=a2ax2261.

xa2x2dx=a2x2C

1ax2262.

x(ax)223dx=C

63.

x2a2x2axarcsinC dx=22aa2x2x264.

x2(a2x2)3dxdx=xa2x2arcsinxC a1aa2x2C 65.=ln22axxax66.

x2a2x2C =222axaxdx67.

x2a2x2axarcsinC axdx=22a22x34x2232222(ax)dx=(5a2x)axaarcsinC 88a12269.xaxdx=(a2x2)3C

368.70.x2xa4x2222axdx=(2xa)axarcsinC

88a2271.

a2x2aa2x222dx=axalnC xxa2x2a2x2xdxarcsinC =x2xa72.

(九)含有ax2bxc(a0)的积分 73.

dxax2bxc=1ln2axb2aax2bxcC a74.

ax2bxcdx=2axbax2bxc 4a

xax2bxc4acb28a3ln2axb2aax2bxcC

75.

dx=1ax2bxc ab2a3ln2axb2aax2bxcC

dxcbxax2276.

=12axbarcsinC

2ab4ac77.

2axbb24ac2axb2cbxaxdx=cbxaxarcsinC

324a8ab4acxcbxax2dx=1b2axbcbxax2arcsinC

32a2ab4ac78.

(十)含有xa或(xa)(bx)的积分 xbxb)C

79.

xaxadx=(xb)(ba)ln(xaxbxb80.

xaxaxadx=(xb)(ba)arcsinC bxbxbxxadxC=2arcsinbx(xa)(bx)81.

(ab)

82.

2xab(ba)2xa(xa)(bx)arcsinC (xa)(bx)dx=44bx (ab) (十一)含有三角函数的积分 83.sinxdx=cosxC

84.cosxdx=sinxC 85.tanxdx=lncosxC 86.cotxdx=lnsinxC 87.secxdx=lntan(x)C=lnsecxtanxC 4288.cscxdx=lntanxC=lncscxcotxC 289.secxdx=tanxC 90.cscxdx=cotxC 91.secxtanxdx=secxC 92.cscxcotxdx=cscxC

22x1sin2xC 24x1294.cosxdx=sin2xC

241n1n1nn295.sinxdx=sinxcosxsinxdx nn1n1nn1n296.cosxdx=cosxsinxcosxdx nndx1cosxn2dx97.= sinnxn1sinn1xn1sinn2xdx1sinxn2dx98.= nn1n2cosxn1cosxn1cosx1m1mnm2n99.cosxsinxdx=cosm1xsinn1xcosxsinxdx mnmn1n1cosm1xsinn1xcosmxsinn2xdx =mnmn93.sinxdx=

2100.sinaxcosbxdx=11cos(ab)xcos(ab)xC

2(ab)2(ab)101.sinaxsinbxdx=11sin(ab)xsin(ab)xC

2(ab)2(ab)102.cosaxcosbxdx=

11sin(ab)xsin(ab)xC

2(ab)2(ab)103.

2dx=absinxa2b2arctanatanxb2C22ab(a2b2)

x22bbadx12104.=lnC22xabsinxbaatanbb2a22atan105.

(a2b2)

2ababxdxarctan(tan)C=abcosxababab2(a2b2)

xdx1ab2106.=lnabcosxabbaxtan2tan107.

abbaCabba(a2b2)

dx1b=arctan(tanx)C a2cos2xb2sin2xaba1btanxadxln=a2cos2xb2sin2x2abbtanxaC

108.

11sinaxxcosaxC a2a12222110.xsinaxdx=xcosax2xsinax3cosaxC

aaa11111.xcosaxdx=2cosaxxsinaxC

aa12222112.xcosaxdx=xsinax2xcosax3sinaxC

aaa(十二)含有反三角函数的积分(其中a0)

xx22113.arcsindx=xarcsinaxC

aa109.xsinaxdx=

x2a2xx2xax2C 114.xarcsindx=()arcsin24a4ax3x12x222115.xarcsindx=arcsin(x2a)axC

3a9a2116.arccosdx=xarccosxaxa2x2C ax2a2xx2xax2C 117.xarccosdx=()arccos24a4ax3x12x222118.xarccosdx=arccos(x2a)axC

3a9a2xxa=dxxarctanln(a2x2)C aa2x12xa2120.xarctandx=(ax)arctanxC

a2a2119.arctanx3xa2a3xln(a2x2)C 121.xarctandx=arctanx3a66a2(十三)含有指数函数的积分

1xaC lna1axax123.edx=eC

a1axax124.xedx=2(ax1)eC

a1naxnn1axnax125.xedx=xexedx

aa122.adx=

x126.xadx=

nxxxx1aaxC 2lna(lna)1nxnn1xxaxadx lnalna1axeax(asinbxbcosbx)C 128.esinbxdx=22ab1axaxe(bsinbxacosbx)C 129.ecosbxdx=22ab127.xadx=

130.esinbxdx=

axn1eaxsinn1bx(asinbxnbcosbx) 222abnn(n1)b2axn2esinbxdx 2ab2n2131.ecosbxdx=

axn1axn1ecosbx(acosbxnbsinbx) 222abnn(n1)b2axn2ecosbxdx 222abn(十四)含有对数函数的积分 132.lnxdx=xlnxxC

dxxlnx=lnlnxC

1n11n134.xlnxdx=x(lnx)C

n1n1133.

135.(lnx)dx=x(lnx)n(lnx)136.x(lnx)dx=

nnn1dx

mn1nmn1xm1(lnx)nx(lnx)dx m1m1(十五)含有双曲函数的积分 137.shxdx=chxC 138.chxdx=shxC 139.thxdx=lnchxC

x1sh2xC 24x12141.chxdx=sh2xC

24140.shxdx=2(十六)定积分 142.143.

cosnxdx=sinnxdx=0

cosmxsinnxdx=0

144.

0,mncosmxcosnxdx= ,mn0,mn145.sinmxsinnxdx=

,mn146.

0sinmxsinnxdx=2000,mncosmxcosnxdx=

,mn2147. In= In=

sinxdx=cosnxdx

n20n1In2 nn1n3 Innn2n1n3Innn2

42,I1=1  (n为大于1的正奇数)

5331,I0= (n为正偶数)

4222一、 (系数不为0的情况)

a0xna1xn1limxbxmbxm101a0b0an0bmnmnmnm

lim1xe1x二、重要公式(1)

sinxlim1x0x

(2)x0 (3)

limna(ao)1n

n(4)nlimn1limarccotx0limexlimarctanx (5)

x2 (6)

xlimarctanxlimex02

(7)x (8)xlimarccotx

(9)x

(10)x (11)x0xlimx1

三、下列常用等价无穷小关系(

x0)

x arctanx

sinx

x tanxx e1xx arcsinxx a1xx

1cosx12x2

ln1x

xlna 1x1x

四、导数的四则运算法则

uvuv uvuvuv

五、基本导数公式

uuvuvv2 v1c0sinxcosxxx⑴ ⑵ ⑶

cosxsinxtanxsec2xcotxcsc2x⑷ ⑸ ⑹ secxsecxtanxcscxcscxcotx⑺ ⑻

eexx ⑽

aaxlnax1lnxx ⑾

logxa11arcsinx1x2xlna ⒀

arccosx ⒁

11x2

1arctanx1x2⒂

六、高阶导数的运算法则

1arccotx21x ⒃

x1⒄⒅

x12x

(1)

uxvxnnuxnvxn

(2)

cuxcunx

(3)

uaxbnnanunaxbkn (4)

uxvx

cuk0nnkxvx(k)

七、基本初等函数的n阶导数公式 (1)

xnnn! (2)neaxbnaneaxb (3)

axnaxlnna

(4)

sinaxbansinaxbn2 (5)

cosaxbnnancosaxbn2 n(6)

1axb1ann!axbn1lnaxb (7)

n1n1ann1!axbn

八、微分公式与微分运算法则 ⑴⑷⑺

dc0 ⑵

dxx1dx ⑶

dsinxcosxdx

dcosxsinxdx ⑸

dtanxsec2xdx ⑹

dcotxcsc2xdx

dsecxsecxtanxdxdexx ⑻

dcscxcscxcotxdxdlnx1dxx

edx ⑽daaxxxlnadx1 ⑾

1dlogadxxlna ⑿

darctanxdarcsinx⒀

1x2dx ⒁

darccosx11x2dx

11dxdarccotxdx221x1x ⒃

九、微分运算法则

duvdudv ⑵

dcucdu

duvvduudv

uvduudvd2vv⑷

十、基本积分公式

x1dxxdxclnxckdxkxc1⑴ ⑵ ⑶x

axxxadxcedxeccosxdxsinxclna⑷ ⑸ ⑹

x1dxsec2xdxtanxc2sinxdxcosxc⑺ ⑻cosx 112cscxdxcotxcdxarctanxc22⑼sinx ⑽1x

11x2dxarcsinxc

十一、下列常用凑微分公式 积分型 换元公式 faxbdx1faxbdaxba 1fxx1dxfxdxuaxb 1flnxdxflnxdlnxx xxxxfeedxfedefaxaxdx1faxdaxlna fsinxcosxdxfsinxdsinx2 ux ulnx uex  fcosxsinxdxfcosxdcosx ftanxsecxdxftanxdtanx fcotxcscxdxfcotxdcotx 2uax usinx ucosx utanx ucotx 

1dxfarctanxdarctanx21x 1farcsinxdxfarcsinxdarcsinx21x farctanx

uarctanx uarcsinx 十二、补充下面几个积分公式

tanxdxlncosxc cotxdxlnsinxc secxdxlnsecxtanxc cscxdxlncscxcotxc

11xdxarctanca2x2aa

11xadxlncx2a22axa

1a2x2dxarcsinxca

1x2a2dxlnxx2a2c

十三、分部积分法公式

⑴形如

naxxedx,令uxn,dveaxdx

形如

nxsinxdxnux令,dvsinxdx

形如

nxcosxdx令uxn,dvcosxdx

⑵形如

nxarctanxdx,令uarctanx,dvxndx

形如

nxlnxdx,令ulnx,dvxndx

axesinxdxeaxcosxdxueax,sinx,cosx⑶形如,令均可。

十四、第二换元积分法中的三角换元公式 (1)a2x2

2222xasint (2) ax xatant (3)xa xasect

【特殊角的三角函数值】

(1)sin00 (2)

sin631sinsin132 (4)2 (3)2) (5)sin0

31coscos02 (3)32 (4)2) (5)cos1 3tan3tan3 (3)32不存在 (5)tan0 (4)

cot (3)

(1)cos01 (2)

cos6(1)tan00 (2)

tan6(1)cot0不存在 (2)

十五、三角函数公式

1.两角和公式

cot63333cot(4)

20(5)cot不存在

sin(AB)sinAcosBcosAsinB sin(AB)sinAcosBcosAsinB cos(AB)cosAcosBsinAsinB cos(AB)cosAcosBsinAsinB

tanAtanBtanAtanBtan(AB)1tanAtanB 1tanAtanB cotAcotB1cotAcotB1cot(AB)cot(AB)cotBcotA cotBcotA tan(AB)

2.二倍角公式

sin2A2sinAcosA cos2Acos2Asin2A12sin2A2cos2A1

tan2A

3.半角公式

2tanA1tan2A

sinA1cosAA1cosAcos2222

tan

A1cosAsinAA1cosAsinAcot21cosA1cosA 21cosA1cosA

4.和差化积公式

sinasinb2sinababababcossinasinb2cossin22 22 ababababcosacosb2coscoscosacosb2sinsin22 22

tanatanb

5.积化和差公式

sinabcosacosb

11sinasinbcosabcosabcosacosbcosabcosab22

11sinacosbsinabsinabcosasinbsinabsinab22

6.万能公式

a1tan22sinacosaa1tan21tan22

2tan

7.平方关系

a2a2

a2tanaa1tan22

2tansin2xcos2x1 sec2xtan2x1 csc2xcot2x1

8.倒数关系

tanxcotx1 secxcosx1 cscxsinx1

9.商数关系

tanx

sinxcosxcotxcosx sinx

十六、几种常见的微分方程

dyfxgyfxg1ydxf2xg2ydy01.可分离变量的微分方程:dx , 1

dyyfdxx 2.齐次微分方程:

dypxyQxdx3.一阶线性非齐次微分方程: 解为:

ye

pxdxQxepxdxdxc

因篇幅问题不能全部显示,请点此查看更多更全内容