您的当前位置:首页正文

绝缘材料的选择及失效原因分析

2020-05-13 来源:好走旅游网
龙源期刊网 http://www.qikan.com.cn

绝缘材料的选择及失效原因分析

作者:万艳玲

来源:《中小企业管理与科技·学术版 》2008年第04期

随着城市电网供电要求的不断提高和变压器技术的进步,干式变压器在我国的使用已经很普遍。在这短短的二、三十年中,干式变压器技术得到了迅速的发展,除了大家比较熟悉的环氧树脂型干式变压器外最近出现了一些不用环氧树脂真空浇注或缠绕工艺的SG型敞开式干式变压器以及采用NOMEX(诺迈克)绝缘材料,非环氧树脂真空浇注或VPI真空、压力浸渍处理的SCR型包封式干式变压器。这些变压器的出现可以让供电用户有更多的选择。所有敞开式干式电力变压器的产品型号都称SG型,它们有相似的电磁计算、线圈形式和外形结构,但在绝缘材料的选用、结构设计、制造工艺方面却有不同之处。 一、敞开式干式变压器在中国的发展

二十世纪六十年代以前的干式变压器主要是B级绝缘的敞 开式干式变压器,产品型号为SG型。当初还没有箔式线圈时,低压多数为多根并绕的层式或螺旋式线圈,高压为饼式线圈。导线为双玻璃丝包线或单玻璃丝包缩醛漆包线。其余绝缘材料多数为酚醛玻璃纤维类材料。其浸渍工艺为常温、常压下用B级绝缘浸渍漆分别对高、低压线圈浸渍并进行中温干燥(干燥温度不超过130℃)。 二、干式变压器的绝缘处理

油浸式变压器的水分主要集中在绝缘件中,把器身和油分别干燥后,将器身浸入油中,用油把它保护起来。即使器身或油再次受潮后,还可以将它们重新进行干燥处理。

1、线圈绕制、整理完后进行烘焙干燥,这是一个很重要的阶段, 因为所有的干式变压器线圈不可能再进行第二次干燥。通常采用烘房常压干燥,根据不同的规格应有严格的工艺操作程序。可以采用高温(180-190℃)、时间短或中温(140℃)、时间稍长的干燥方法。前者适用于采用NOMEX材料的SG型变压器,这样可以缩短处理时间,提高工效。

2、使变压器适当降温后,把它置入浸渍罐中,在真空的状态下注入浸渍漆,并保持一段时间,此时浸渍漆将渗透到线圈的缝隙中。 三、变压器绝缘失效的原因及预防措施 1.由击穿引起的绝缘失效

(1)气体的击穿 当电场强度超出一定值时,会造成间隙击穿。如果间隙过小,也会使电场强度增加而造成气体击穿。常见的有,电容器因施加电压过高而击穿,因电线裸露而产生的电火花,闭合开关时产生的电弧,出现这些情况均说明其气体电介质不再具有绝缘性能。

龙源期刊网 http://www.qikan.com.cn

(2)液体电介质的击穿 液体电介质的电气强度比标准状态下气体的要高得多。若油中含有水分等杂质后,其电气强度将严重下降,极易发生击穿现象。

(3)固体电介质的击穿 固体电介质的击穿形式有:电击穿、热击穿和电化学击穿。同一种电介质在不同的外界条件下,可以发生不同的击穿形式。

①电击穿。由于外电场的存在,电离电子在强电场中积累起足够能量,使其相互间发生碰撞导致电击穿。其特点是过程快,击穿电压高。

②热击穿。击穿电压随温度和电压作用时间的延长而迅速下降,这时的击穿过程与电介质中的热过程有关,称为热击穿。环境温度和电压作用时间增加,热击穿电压下降;电介质厚度增加,平均击穿场强将下降。

③电化学击穿。在电场作用下,电介质中可能因此而发生化学变化,不可逆地逐渐增大了电介质的电导,最后导致击穿,称为电化学击穿。由于化学变化通常导致介质损失增加,因而电化学击穿的最终形式常是热击穿。

(4)沿面击穿 在实际的绝缘结构中,固体介质周围往往有气体或液体介质,击穿常常沿着两种电介质交界面并在电气强度较低的一侧发生,称为沿面击穿。沿面击穿电压比单一介质击穿电压要低。电容器电极边缘,电机线(棒)端部绝缘体很容易发生沿面放电,对绝缘的损害很大。

2.老化引起的绝缘失效。

(1)热老化 以电缆、导线为例,随着温度升高,绝缘体变软,其抗剪强度就会丧失。在高温下如果被其他物体挤压,则绝缘体有可能会发生塑变甚至使导体外露最终酿成短路;当温度超过绝缘体的额定值时,将导致绝缘退化(寿命缩短),还可能造成塑变或炭化,引起过度退化;因过热而老化并硬化的绝缘体如受到弯曲,就有可能出现裂纹。若温度低于绝缘体的额定值时,如果冷导线或电缆受到剧烈弯曲或冲击时,绝缘体也会破裂。

线圈短路、烧坏以及绝缘下降在很大程度上皆是由于热老化而引起的。开关所受的化学作用会随高温而加速,开关触点和接地之间的绝缘电阻会随温度升高而降低。高温还会使触点和开关机构的腐蚀速度加快。

(2)电气老化 当绝缘材料承受高压电场时,绝缘材料的表面或内部空隙会发生放电。屡次放电所产生的离子电弧和离子运动将严重侵蚀绝缘材料,使其绝缘性能下降。 (3)环境因素引起的老化 电机周围有灰尘、腐蚀性气体、水分、附着的油类和放射线等,使其加速老化。

龙源期刊网 http://www.qikan.com.cn

由于杂质离子的存在更容易产生离子电流和发生离子碰撞,因此一般的电线等导体表面会加防护套或涂防护漆,一方面起绝缘作用,另一方面可以保护导体不受周围灰尘、气体的侵蚀。

(4)机械老化 受启动—运行—停车或负荷变动所造成的交变负荷和交变冲击的影响,绝缘材料与导电体之间因温差及膨胀系数差而产生的反复应力与变形,会使绝缘性能下降。另外受电磁力、离心力、振动和重力的作用,绝缘劣化也会加速,这方面尤以转子绕组更明显。 机械冲击一般会造成衔铁变形,以致在受到冲击时不能保持定位。高频振动将使弹性元件疲劳或产生共振作用,如果在开关触点闭合时,便会使触点反跳造成闭合不严,使电气设备无法正常工作。

因此,为防止固体电介质绝缘失效,应避免电介质受到振动、冲击、压力和其他环境因素所产生的应力,防止固体电介质变形、移位;应使固体电介质远离酸、碱等腐蚀性很强的液体,或免受强烈射线的照射;电介质所处环境温度不能过高,这就要求电气设备超负荷工作时间不能过长。

此外,应尽量避免在不均匀电场使用固体电介质,防止固体电介质的电击穿。在选择绝缘材料时也应有所侧重,比如聚合物绝缘体在高温环境下趋向于加速退化,而热固性塑料绝缘材料如酚醛塑料比ABS、聚碳酸脂、聚丙烯或乙缩醛树脂等工作性能好。

(5)气体电介质的预防 对于某些电气设备内部需要真空介质的情况,必须确保设备的严格密封,保持其真空度;保持电介质工作环境无污染、无粉尘等颗粒性物质。

湿气和污物积聚会形成腐蚀性物质,损害电容器和其他电子元器件。即使是在标准湿度的大气条件下,湿气也很可能围绕污物积聚起来。如果不工作时设备还要承受潮湿侵蚀,必须有充分的防湿措施(如涂层)来加以保护。

根据击穿理论可知,在某些情况下,即使电容器电压不是很高,也会发生击穿现象,就是因为两极板之间的距离太小。因此,保持正负两极板间的距离不过小,也是防止气体击穿的重要手段。

因篇幅问题不能全部显示,请点此查看更多更全内容