您的当前位置:首页正文

学而思作业3

2022-05-05 来源:好走旅游网


杨秀情——六年级暑假——配套练习

【作业要求】

(1)建议打印下来,归类整理好,一个学期下来,装订成册 (2)先看秀情老师网校的课程视频,再做这些作业哈 (3)可根据自己的情况,有选择性的做题哦 (4)书写规范,步骤清晰

【温馨提示】

(1)做完后可以拍照,上传到秀情老师的群:数学加油站

数学加油站(五年级):236427726 数学加油站(六年级):252271825

(2)秀情老师从中选优秀作业,赠送我独有的精美礼品 (3)两周一次进行——【情学好问】直播答疑 情学好问(五年级):62834135

情学好问(六年级):283789167

【练练1】

(2005全国小学数学奥林匹克竞赛)

591935.2219930.41.610计算:9()

52719950.519951965.22950

【练练2】 计算:

124248361213626123918102040

103060

【练练3】

1239计算下列各式....______;

23410

123....100______;

246....200

【练练4】

2009个444444200864444444748200820082008L20082008L2008计算:=_______.

200920092009L20092009L2009144444442444444432009个2009

【练练5】

12______.(2008年华杯赛决赛)

134014360244

6401494016

【练练6】

(北京市第10届迎春杯决赛) 7

448021934185561______; 83332590935255

【练练7】 计算: (133311128)(128)______. 2008100425120081004251

【练练8】

1111(2008年台湾数学竞赛)2008(1)(1)(1)....(1)_____;

2341000

【练练9】

(首师大附中入学选拔题)

13242648397241296_____;

12424836124816

【练练10】

(浙江省小学数学活动课夏令营)

(3

【练练11】

7815210945)(223)111317111317

111111111(1)(1)(1)(1)(1)(1)(1)(1)(1)_____.

2468103579

【练练12】

111111(1)(1)(1)(1)....(1)(1)_____.

22339999

【练练13】

111计算:(1)(1)...(1)

22331010

【练练14】

1到100共100个数,所有数的倒数和,任两数乘积的倒数和,任三数乘积的倒数和,……100个数乘积的倒数和,再把这些和相加,得数是多少?

【练练15】

13572345计算:(3333)()

5791157911

【练练1答案】

519(5.223.9)19930.81.69【分析】 原式()

51995199519(6.545.22)95191.3219930.820.89()

519951995191.329199321[0.8()]

1995199510.8 1.25

【练练2答案】

124(132333++103)4【分析】 原式 3333136(123++10)9

【练练3答案】

【分析】连锁约分和整体约分.

第一题,注意到,前一个数的分母恰好是后一个数的分子;那么我们可以把它们全部约掉

12391....

1010234第二题,我们注意到,分母中的每一个加数,都恰好是对应的分子加数的2倍.那么我们可以把分子分

母中都有的部分提出来:

123....100123....1001

246....2002(123....100)2

【练练4答案】

2008个4444440001644444447482008(1+10001+100010001+....+100010001L0001)2008 [分析]原式

2009(1+10001+100010001+....+100010001L0001)2009144444442444444432008个0001

【练练5答案】

[分析]仔细观察可发现,分子是分母的2倍.

122原式162007920084

122007182008

【练练6答案】

[分析]首先要把式子化为真分数和假分数连乘的形式:

69793205原式628112590935255833321934538111994597979971319935641136412997319937523356 

【练练7答案】

[分析]被除数和除数的形式相同,考虑能否找到同类项. 原式(201120112011200920092009)()2008100425120081004251111111[2011()][2009()]200810042512008100425120112009

【练练8答案】

1004原式20083451001....10050042341000

【练练9答案】

先对分子分母提取公因数

1324231324331324431324原式12423124331244312431324(1233343)124(1234)333

9

【练练10答案】 【分析】 原式

((4060100243660)() 1113171113174060100243660)() 11131711131723523520()12()

111317111317

205 123

【练练11答案】 [分析] 原式357911246824681035793254769811()()()() 23456789101110

【练练12答案】

[分析]方法一:

111111原式(1)(1)....(1)(1)(1)....(1)239923991001 2995099方法二:

11111111原式(1)(1)(1)(1)(1)....(1)(1)(1)223349899991100 2995099

【练练13答案】

(21)(21)(31)(31)(101)(101)【分析】 原式= ...2233101013243546576879810911=

223344...101012334455...991011=

223344...99101012101111==. 22101020

【练练14答案】 【分析】

法一:找规律,如果是1个数,得数是1,如果是2个数,得数是2,如果是1~3,得数是3,所以考虑最后得数是100。

111法二:得数实际是式子(11)(1)(1)(1)1100的展开,所以得数是100

23100

【练练15答案】

162432402345原式()()8

5791157911

因篇幅问题不能全部显示,请点此查看更多更全内容