总体评价:这是一节成功的课。教学目标明确,重点突出,难点突破有效,在这节课的教学过程中,学生的思维始终保持着高度的活跃性,课堂气氛活跃,学生活动有效调动学生思维,把“看不见的”学生原始思维的过程和方法清晰地通过学生黑板板演展讲呈现出来,让学生原始思维可视化,以便更好地对知识的理解、记忆和运用,从而促进对目标的达成,符合维果斯基“最近发展区”理论,彰显活动有效之美。
本节课突出的优点:
一、数学活动的起点是学生原有知识和经验。
心理学家奥苏贝尔曾说过:“假如让我把全部教育心理学仅仅归结为一条原理的话,那么我将一言以蔽之,影响学习的唯一重要的因素就是学习者已经知道了什么,要探明这一点,并应据此进行教学。”
本节课的第一环节:“温故导航”的设计遵循了从学生已有的数学知识现实出发,让学生类比平行四边性质探究平行四边形的判定,引发学生产生数学思考,明确平行四边形的判定也应该先从边的角度进行研究,张老师的数学活动设计起点是在学生原有知识和经验之上进行的,将新知识的学习类比转化为已有的旧知识,让学生经历了知识的生成过程,这样学生在数学活动中在原有知识和经验基础上轻松的构建了新知识。
二、数学活动的情景是学生熟悉和感兴趣的。
“兴趣是最好的老师”,它能激发学生的学习兴趣,调动学生主动参与学习的积极性。
本节课的第二环节:“自主探究”的设计创造性地使用教材,将教材中的细木条的封闭情景问题,改编为有挑战性的开放式的问题“学习了平行四边形后,小明回家用细木棒钉制了一个。第二天,小明拿着自己动手做的平行四边形向同学们展示。小辉却问:你凭什么确定这四边形就是平行四边形呢?大家都困惑了......”,并设计让学生用熟悉的硬纸条动手操作。
张老师根据学生实际,从他们熟悉或感兴趣的问题情境引入学习主题,激发学生的探索欲,这种有目的地进行数学问题的活动探究,让学生在更广阔的空间里自由发展,让新知识自然产生,既让新知识产生的魅力吸引学生,又激发了学生的学习兴趣,把学生带入了问题情境之中,以教学的艺术感染了学生。
三、数学活动的数学化是学生原始思维的可视化。
荷兰数学教育家弗赖登塔尔指出:如果将数学解释为一种活动的话,那就必须通过数学化来教数学,学数学。他认为数学活动的本质特征就是数学化,即学习者从自己的数学现实出发,经过自己的思考,得出有关数学结论,建立数学模型的过程。
本节课的第二环节:自主探究中的“三个活动”设计了7人次个体思维可视化的讲台动手操作演示、黑板板演展示交流,有效的重视了学生思维的发展过程,让学生在数学化的原始思维可视化中经历思维过程,去理解,去感受,去发现问题,去解决数学问题,不断提升思维水平,彰显了数学活动的有效之美。
本节课的最大亮点在于,在“一组对边平行且相等的四边形是平行四边形”的.讲台动手操作演示,该生采用分类的方式全面分析,对边在位置上可分为平行和不平行两种情况进行分类讲解,考虑问题很全面。让人耳目一新,深感后生可畏,这种课堂是真正意义上的生命化课堂,它让全班学生经历了原始思维的可视化过程,他们在数学活动的数学化中,不但提升了自身的思维水平,也提升了分析和解决问题的方法水平,还得出并记住了有关“平行四边形从边的角度的三种判定”的数学结论,在数学活动中建立了数学模型。
建议:
1、在探究式教学中,不但要强化了知识与技能以及能力目标,老师还要重视发挥多种形式的评价功能,情感态度与价值观目标才能达成的更好,更能激发学生提高探究活动的兴趣和积极性。
2、在探究式教学中,知识梳理环节不但要有知识的总结,更要注意数学思想、分析方法等的总结。
3、在探究式教学中,本节课的集体回答高达26次太多,有的学生就会滥竽充数,可将其改为学困生抽答,个体抢答、同桌互答等形式。
收获:
1、在探究式教学中,利用素材资源创造性使用教材是设计好问题的关键。问题要指向教学目标,有层次,并注意质量和数量的统一。
2、在探究式教学中,有效利用贴近学生生活的课程资源是重要前提,因此,我们选取素材时应注意生活的趣味性,典型性,针对性,思想性、教育性。
3、在探究式教学中,学生积极参与课堂教学活动是重要标志。素材贴近生活,问题设计难易适当,教师引导及时到位,教学内容适合探究等都有利于提高学生课堂参与度。
4、在平时教学中要注意对学生进行学习方法指导,也要注意活动数学化,还要把“看不见的”学生原始思维的过程和方法清晰地通过学生演示、板演展讲等多种形式呈现出来,让学生思维可视化,从而促进对目标的达成,提高学生思维水平。
因篇幅问题不能全部显示,请点此查看更多更全内容