看了骆老师的短片首先感受到了他的恒心与毅力。就很想听他的课。在这节课李他创设了“尾巴重新接回”的游戏情境,引领学生探索位于正多边形上猴子的身体和尾巴重新接回的奥秘。
首先老师出示了一组正六边形和一个正方形。正六边形里是一只猴子,正方形里画的.是猴子的尾巴。
老师让学生猜测,如果正六边形不动,正方形按一个方向转动,转动几次才能让尾巴重新接回。学生猜测6次。老师就根据学生提供的数据进行演示。6次没有让尾巴重新接回,孩子又马上猜12次。通过老师演示,孩子们发现真的是12次让猴子的尾巴重新接回了。
这一环节,学生最初认为是6次,现在又发现是12次,有了这样的认知冲突,老师并没有解释为什么。
紧接着,孩子们又经历第二次猜想并验证。老师问:“如果再玩一次这个游戏,你们有没有信心把它猜对?”学生大声齐说:“有。”
老师出示一组新图形:一个正八边形和一个正五边形。正八边形里是一只公鸡,正五边形里是公鸡的尾巴。
第三次猜想,让孩子亲历猜想、验证、记录过程。两组图形,一个是正五边形里有一只老鼠,另一个正方形里是老鼠的尾巴。另一组图形是一个正八边形里画了一只金鱼,另一个正方形里画的是金鱼的尾巴。
情境巧妙、引人入胜,学生趣味盎然。“尾巴重新接回的奥秘到底是什么?”学生紧紧围绕这一问题展开了积极的思考、热烈的讨论,老师在学生独立思考的基础上巧妙引导他们进行汇报交流,学生热情高涨,“为什么重新接回的次数就正好是多边形边数的公倍数呢?”课终,学生与现场观众还沉浸在对“奥秘”的进一步思考中。
因篇幅问题不能全部显示,请点此查看更多更全内容