证券组合分析的多种证券组合的收益和风险

发布网友 发布时间:2022-04-23 15:37

我来回答

1个回答

热心网友 时间:2023-09-19 13:20

这里将把两个证券的组合讨论拓展到任意多个证券的情形。设有N种证券,记作 A1 、A2 、A3 、… 、AN ,证券组合P = ( x1 ,x2 ,x3 ,… ,xn ) 表示将资金分别以权数 x1 、x2 、x3 、…、xn,投资于证券 A1 、A2 、A3 、… 、AN 。如果允许卖空,则权数可以为负,负的权数表示卖空证券占总资金的比例。正如两种证券的投资组合情形一样,证券组合的收益率等于各单个证券的收益率的加权平均。即:设Ai的收益率为Ri ( i = 1 ,2 ,3 ,…,N ) ,则证券组合P = ( x1 ,x2 ,x3 ,… ,xn ) 的收益率为:
Rp = x1 × r1 + x2 × r2 + … + xn × rn = ∑xi ri
推导可得证券组合P的期望收益率和方差为:
E ( rp ) = ∑xi E(ri) ( 1 )
方差 = ∑i∑j xi xj cov(xi , xj) ( 2 )
由式( 1 )和( 2 )可知,要估计E(rp) 和 方差,当N非常大时,计算量十分巨大。在计算机技术尚不发达的20世纪50年代,证券组合理论不可能运用于大规模市场,只有在不同种类的资产间,如股票、债券、银行存单之间分配资金时,才可能运用这一理论。20世纪60年代后,威廉·夏普提出了指数模型以简化计算。随着计算机技术的发展,以开发出计算E(rp) 和 方差的计算机运用软件,如:Matlab 、SPSS 和 Eviews 等,大大方便了投资者。

声明声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:11247931@qq.com