keras中模型如何传递到函数里供函数体使用

发布网友 发布时间:2022-04-23 15:48

我来回答

1个回答

热心网友 时间:2023-07-13 20:21

我的一个模型含有自定义层“SincConv1D”,需要使用下面的代码导入。
我的一个模型含有自定义层“SincConv1D”,需要使用下面的代码导入:
from keras.models import load_model
model = load_model('model.h5', custom_objects={'SincConv1D': SincConv1D})
如果不加custom_objects指定目标层Layer,则会出现以下报错:
ValueError: Unknown layer: SincConv1D
同样的,当我的模型含有自定义函数“my_loss”,需要使用下面的代码导入:
from keras.models import load_model
model = load_model('model.h5', custom_objects={'my_loss': my_loss})
补充知识:keras加载模型load_model报错——ValueError: Unknown layer: CRF
我就废话不多说了,大家还是直接看代码吧!
from keras.models import load_model
model = load_model(model_path)
会报错,需要在load_model函数中添加custom_objects参数,来声明自定义的层
(用keras搭建bilstm-crf,在训练模型时,使用的是:
from keras_contrib.layers.crf import CRF)
from keras_contrib.layers.crf import CRF, crf_loss, crf_viterbi_accuracy
model = load_model(model_path, custom_objects={"CRF": CRF, 'crf_loss': crf_loss,
'crf_viterbi_accuracy': crf_viterbi_accuracy})

声明声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:11247931@qq.com