函数的概念,什么是函数

发布网友 发布时间:2022-04-23 01:04

我来回答

13个回答

懂视网 时间:2022-05-14 03:22

热心网友 时间:2022-05-14 01:04

1、函数(数学函数)

函数的定义是给定一个数集A,假设其中的元素为x,对A中的元素x施加对应法则f,记作f(x),得到另一数集B,假设B中的元素为y,则y与x之间的等量关系可以用y=f(x)表示。

函数概念含有三个要素:定义域A、值域C和对应法则f。其中核心是对应法则f,它是函数关系的本质特征。

2、函数(百合科百合属百合栽培品种)

函数是原产荷兰的百合属多年生球根花卉。中度喜光;稍耐荫;中等喜温,多年生球根花卉;性成熟期三年,株高100-120cm,生长期90-100d。花白色,前端外翻,边缘波状,用于切花;观赏

3、函数(计算机函数)

函数是指一段在一起的、可以做某一件事儿的程序。也叫做子程序、(OOP中)方法。一个较大的程序一般应分为若干个程序块,每一个模块用来实现一个特定的功能。所有的高级语言中都有子程序这个概念,用子程序实现模块的功能。

扩展资料

数学函数的由来

中文数学书上使用的“函数”一词是转译词。是我国清代数学家李善兰在翻译《代数学》(1859年)一书时,把“function”译成“函数”的。中国古代“函”字与“含”字通用,都有着“包含”的意思。

中国古代用天、地、人、物4个字来表示4个不同的未知数或变量。这个定义的含义是:“凡是公式中含有变量x,则该式子叫做x的函数。”所以“函数”是指公式里含有变量的意思。

我们所说的方程的确切定义是指含有未知数的等式。但是方程一词在我国早期的数学专著《九章算术》中,意思指的是包含多个未知量的联立一次方程,即所说的线性方程组。

参考资料来源:百度百科—函数 (数学函数)

参考资料来源:百度百科—函数(百合科百合属百合栽培品种)

参考资料来源:百度百科—函数 (计算机函数)

热心网友 时间:2022-05-14 02:55

函数的定义:给定一个数集A,假设其中的元素为x。现对A中的元素x施加对应法则f,记作f(x),得到另一数集B。假设B中的元素为y。则y与x之间的等量关系可以用y=f(x)表示。我们把这个关系式就叫函数关系式,简称函数。函数概念含有三个要素:定义域A、值域C和对应法则f。其中核心是对应法则f,它是函数关系的本质特征。

扩展资料

表示

首先要理解,函数是发生在集合之间的一种对应关系。然后,要理解发生在A、B之间的函数关系不止且不止一个。最后,要重点理解函数的三要素。

函数的对应法则通常用解析式表示,但大量的函数关系是无法用解析式表示的,可以用图像、表格及其他形式表示  。

概念

在一个变化过程中,发生变化的量叫变量(数学中,常常为x,而y则随x值的变化而变化),有些数值是不随变量而改变的,我们称它们为常量。

自变量(函数):一个与它量有关联的变量,这一量中的任何一值都能在它量中找到对应的固定值。

因变量(函数):随着自变量的变化而变化,且自变量取唯一值时,因变量(函数)有且只有唯一值与其相对应。

函数值:在y是x的函数中,x确定一个值,y就随之确定一个值,当x取a时,y就随之确定为b,b就叫做a的函数值   。

映射定义

设A和B是两个非空集合,如果按照某种对应关系  ,对于集合A中的任何一个元素a,在集合B中都存在唯一的一个元素b与之对应,那么,这样的对应(包括集合A,B,以及集合A到集合B的对应关系f)叫做集合A到集合B的映射(Mapping),记作  。其中,b称为a在映射f下的象,记作:  ; a称为b关于映射f的原象。集合A中所有元素的象的集合记作f(A)。

则有:定义在非空数集之间的映射称为函数。(函数的自变量是一种特殊的原象,因变量是特殊的象) 

几何含义

函数与不等式和方程存在联系(初等函数)。令函数值等于零,从几何角度看,对应的自变量的值就是图像与X轴的交点的横坐标;从代数角度看,对应的自变量是方程的解。另外,把函数的表达式(无表达式的函数除外)中的“=”换成“<”或“>”,再把“Y”换成其它代数式,函数就变成了不等式,可以求自变量的范围 。

集合论

如果X到Y的二元关系  ,对于每个  ,都有唯一的  ,使得  ,则称f为X到Y的函数,记做:

参考资料函数(数学函数)_百度百科 

热心网友 时间:2022-05-14 05:03

函数是指一段在一起的、可以做某一件事儿的程序。也叫做子程序、(OOP中)方法。

一个较大的程序一般应分为若干个程序块,每一个模块用来实现一个特定的功能。所有的高级语言中都有子程序这个概念,用子程序实现模块的功能。在C语言中,子程序的作用是由一个主函数和若干个函数构成。由主函数调用其他函数,其他函数也可以互相调用。同一个函数可以被一个或多个函数调用任意多次。

在程序设计中,常将一些常用的功能模块编写成函数,放在函数库中供公共选用。要善于利用函数,以减少重复编写程序段的工作量。
函数分为全局函数、全局静态函数;在类中还可以定义构造函数、析构函数、拷贝构造函数、成员函数、友元函数、运算符重载函数、内联函数等。

热心网友 时间:2022-05-14 07:28

函数的定义
函数的传统定义:
设在某变化过程中有两个变量x、y,如果对于x在某一范围内的每一个确定的值,y都有唯一确定的值与它对应,那么就称y是x的函数,x叫做自变量。
我们将自变量x取值的集合叫做函数的定义域,和自变量x对应的y的值叫做函数值,函数值的集合叫做函数的值域。
函数的近代定义:
设A,B都是非空的数的集合,f:x→y是从A到B的一个对应法则,那么从A到B的映射f:A→B就叫做函数,记作y=f(x),其中x∈A,y∈B,原象集合A叫做函数f(x)的定义域,象集合C叫做函数f(x)的值域,显然有CB。
符号y=f(x)即是“y是x的函数”的数学表示,应理解为:
x是自变量,它是法则所施加的对象;f是对应法则,它可以是一个或几个解析式,可以是图象、表格,也可以是文字描述;y是自变量的函数,当x为允许的某一具体值时,相应的y值为与该自变量值对应的函数值,当f用解析式表示时,则解析式为函数解析式。y=f(x)仅仅是函数符号,不是表示“y等于f与x的乘积”,f(x)也不一定是解析式,在研究函数时,除用符号f(x)外,还常用g(x),F(x),G(x)等符号来表示。
对函数概念的理解
函数的两个定义本质是一致的,只是叙述概念的出发点不同,传统定义是从运动变化的观点出发,而近代定义是从集合、映射的观点出发。这样,就不难得知函数实质是从非空数集A到非空数集B的一个特殊的映射。
由函数的近代定义可知,函数概念含有三个要素:定义域A、值域C和对应法则f。其中核心是对应法则f,它是函数关系的本质特征。y=f(x)的意义是:y等于x在法则f下的对应值,而f是“对应”得以实现的方法和途径,是联系x与y的纽带,所以是函数的核心。至于用什么字母表示自变量、因变量和对应法则,这是无关紧要的。
函数的定义域(即原象集合)是自变量x的取值范围,它是构成函数的一个不可缺少的组成部分。当函数的定义域及从定义域到值域的对应法则完全确定之后,函数的值域也就随之确定了。因此,定义域和对应法则为“y是x的函数”的两个基本条件,缺一不可。只有当两个函数的定义域和对应法则都分别相同时,这两个函数才是同一个函数,这就是说:
1)定义域不同,两个函数也就不同;
2)对应法则不同,两个函数也是不同的;
3)即使是定义域和值域都分别相同的两个函数,它们也不一定是同一函数,因为函数的定义域和值域不能唯一地确定函数的对应法则。
例如:函数y=x+1与y=2x+1,其定义域都是x∈R,值域都为y∈R。也就是说,这两个函数的定义域和值域相同,但它们的对应法则是不同的,因此不能说这两个函数是同一个函数。
定义域A,值域C以及从A到C的对应法则f,称为函数的三要素。由于值域可由定义域和对应法则唯一确定。两个函数当且仅当定义域与对应法则分别相同时,才是同一函数。
例如:在①y=x与 ,② 与 ,③y=x+1与 ,④y=x0与y=1,⑤y=|x|与 这五组函数中,只有⑤表示同一函数。
f(x)与f(a)的区别与联系
f(a)表示当x=a时函数f(x)的值,是一个常量。而f(x)是自变量x的函数,在一般情况下,它是一个变量,f(a)是f(x)的一个特殊值。如一次函数f(x)=3x+4,当x=8时,f(8)=3×8+4=28是一常数。
当法则所施加的对象与解析式中表述的对象不一致时,该解析式不能正确施加法则。
比如f(x)=x2+1,左端是对x施加法则,右端也是关于x的解析式,这时此式是以x为自变量的函数的解析式;而对于f(x+1)=3x2+2x+1,左端表示对x+1施加法则,右端是关于x的解析式,二者并不统一,这时此式既不是关于x的函数解析式,也不是关于x+1的函数解析式。

热心网友 时间:2022-05-14 10:09

函数(function)的定义通常分为传统定义和近代定义,函数的两个定义本质是相同的,只是叙述概念的出发点不同,传统定义是从运动变化的观点出发,而近代定义是从集合、映射的观点出发。函数的近代定义是给定一个数集A,假设其中的元素为x,对A中的元素x施加对应法则f,记作f(x),得到另一数集B,假设B中的元素为y,则y与x之间的等量关系可以用y=f(x)表示,函数概念含有三个要素:定义域A、值域C和对应法则f。其中核心是对应法则f,它是函数关系的本质特征。 [1]
函数,最早由中国清朝数学家李善兰翻译,出于其著作《代数学》。之所以这么翻译,他给出的原因是“凡此变数中函彼变数者,则此为彼之函数”,也即函数指一个量随着另一个量的变化而变化,或者说一个量中包含另一个量。
中文名
函数
外文名
function
表达式
y=f(x)
提出者
莱布尼茨(G.W.Leibniz)
提出时间
16世纪
详细介绍
表示
首先要理解,函数是发生在集合之间的一种对应关系。然后,要理解发生在A、B之间的函数关系不止且不止一个。最后,要重点理解函数的三要素。
函数的对应法则通常用解析式表示,但大量的函数关系是无法用解析式表示的,可以用图像、表格及其他形式表示[2]。
概念
在一个变化过程中,发生变化的量叫变量(数学中,常常为x,而y则随x值的变化而变化),有些数值是不随变量而改变的,我们称它们为常量。
自变量(函数):一个与它量有关联的变量,这一量中的任何一值都能在它量中找到对应的固定值。
因变量(函数):随着自变量的变化而变化,且自变量取唯一值时,因变量(函数)有且只有唯一值与其相对应。
函数值:在y是x的函数中,x确定一个值,y就随之确定一个值,当x取a时,y就随之确定为b,b就叫做a的函数值[2]。
映射定义
设A和B是两个非空集合,如果按照某种对应关系
,对于集合A中的任何一个元素a,在集合B中都存在唯一的一个元素b与之对应,那么,这样的对应(包括集合A,B,以及集合A到集合B的对应关系f)叫做集合A到集合B的映射(Mapping),记作
。其中,b称为a在映射f下的象,记作:
; a称为b关于映射f的原象。集合A中所有元素的象的集合记作f(A)。
则有:定义在非空数集之间的映射称为函数。(函数的自变量是一种特殊的原象,因变量是特殊的象)[2]
几何含义
函数与不等式和方程存在联系(初等函数)。令函数值等于零,从几何角度看,对应的自变量的值就是图像与X轴的交点的横坐标;从代数角度看,对应的自变量是方程的解。另外,把函数的表达式(无表达式的函数除外)中的“=”换成“<”或“>”,再把“Y”换成其它代数式,函数就变成了不等式,可以求自变量的范围[2]。
集合论
如果X到Y的二元关系
,对于每个
,都有唯一的
,使得
,则称f为X到Y的函数,记做:


时,称f为n元函数[2]。
元素
输入值的集合X被称为f的定义域;可能的输出值的集合Y被称为f的值域。函数的值域是指定义域中全部元素通过映射f得到的实际输出值的集合。注意,把对应域称作值域是不正确的,函数的值域是函数的对应域的子集。
计算机科学中,参数和返回值的数据类型分别确定了子程序的定义域和对应域。因此定义域和对应域是函数一开始就确定的强制进行约束。另一方面,值域是和实际的实现有关[2]

热心网友 时间:2022-05-14 13:07

在某一变化过程中有两个变量x和y,对于x的每一个确定的值,y都有唯一确定的值与它对应,则y与x有函数关系。y=fx其中x叫做自变量,y叫做因变量。说白了就是一种对应法则,人们为了研究问题方便把问题转化成函数就可以通过计算解决了

热心网友 时间:2022-05-14 16:22

在c语言中,函数是程序的基本组成单位,因此可以很方便地用函数作为程序模块来实现c语言程序,利用函数,不仅可以实现程序的模块化,使程序设计变得简单和直观,提高了程序的易读性和可维护性,而且还可以把程序中普通用到的一些计算或操作编程通用的函数,

热心网友 时间:2022-05-14 19:53

简单点说就是描述两个变量之间的关系

热心网友 时间:2022-05-14 23:41

设D为一个给定的实数集,对于每一个x属于D,按照某种对应法则f,总存在唯一确定的实数值y与之对应,则称f为定义在D上的一个函数,习惯称y是x的函数。

热心网友 时间:2022-05-15 03:46

函数的定义通常分为传统定义和近代定义,函数的两个定义本质是相同的,只是叙述概念的出发点不同,传统定义是从运动变化的观点出发,而近代定义是从集合、映射的观点出发。

热心网友 时间:2022-05-15 08:07

数值发生变化的量为变量,数始终不变的量为常量

热心网友 时间:2022-05-15 13:02

1、函数(数学函数)
函数的定义是给定一个数集A,假设其中的元素为x,对A中的元素x施加对应法则f,记作f(x),得到另一数集B,假设B中的元素为y,则y与x之间的等量关系可以用y=f(x)表示。
函数概念含有三个要素:定义域A、值域C和对应法则f。其中核心是对应法则f,它是函数关系的本质特征。
2、函数(百合科百合属百合栽培品种)
函数是原产荷兰的百合属多年生球根花卉。中度喜光;稍耐荫;中等喜温,多年生球根花卉;性成熟期三年,株高100-120cm,生长期90-100d。花白色,前端外翻,边缘波状,用于切花;观赏
3、函数(计算机函数)
函数是指一段在一起的、可以做某一件事儿的程序。也叫做子程序、(OOP中)方法。一个较大的程序一般应分为若干个程序块,每一个模块用来实现一个特定的功能。所有的高级语言中都有子程序这个概念,用子程序实现模块的功能

声明声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:11247931@qq.com