发布网友 发布时间:2022-04-22 18:07
共1个回答
热心网友 时间:2023-11-14 22:15
教学目标:
1、复习反比例函数的概念,会求反比例函数的表达式并能画出图像。
2、复习反比例函数图象的变化及其性质并能运用解决实际问题。
引入:本节我们继续复习反比例函数这章,首先回忆这章的整体框架:
知识点1 反比例函数的概念
知识点2 确定反比例函数的关系式
知识点3 反比例函数的图像及画法
知识点4 反比例函数的性质
知识点5 反比例函数中比例系数k几何意义
知识点6 反比例函数的应用
复习演练:
1、判断下列函数是不是反比例函数:
(1)y=3/x (2)y=-0.5x (3)y=2/x-3
(4)y=3.14/x (5)y=-4/x2 (6)y=1/3x
知识点1 反比例函数的概念
一般地,形如y = k/x (k为常数,k≠0)的函数叫做反比例函数.其中x是自变量,y是x的函数,k是比例系数.
注:判断一个函数是否是反比例函数,关键是看两个变量的乘积是否是一个常数.
知识点2 确定反比例函数的关系式
1.确定实际问题中的反比例函数关系式
关键:认真审题,弄清题意,找出等量关系
2.用待定系数法确定反比例函数关系式
反比例函数的三种表达形式
知识点3 反比例函数的图像及画法
让同学们回忆反比例函数y=6/x和y=-6/x的图像和画法,教师提问:图像分别位于的象限,以及对称性,后用多媒体展示
反比例函数的图象是双曲线.
当k>0时,双曲线的两支分别在第一、三象限;关于 y=-x 轴对称
当k<0时,双曲线的两支分别在第二、四象限.关于y=x轴对称
双曲线的两支关于坐标原点成中心对称.
知识点4 反比例函数的性质
当k>0时,双曲线的两支分别在第一、三象限,在每一个象限内,y随x的增大而减小;
当k<0时,双曲线的两支分别在第二、四象限,在每一个象限内,y随x的增大而增大.
基础再现:
1. 若函数 是反比例函数,则m2+3m+1= .
2.如果反比例函数 y=1-4m/x 的图象位于第二、四象限,那么m的范围为 .
3、已知点A(2,y1), B(5,y2)是反比例函数y=4/x 图象上的两点.请比较y1,y2的大小.
如果再加上点C(-3,y3),如何比较大小呢?方法有多少种?
知识点5 反比例函数中比例系数 k的几何意义
练习:
1.如图,点P是反比例函数y=2/x图象上的一点,PD⊥x轴于D.则△POD的面积为 .
2.如图,点A、B是双曲线y=3/x上的点,分别经过A、B两点向x轴、y轴作垂线段,若阴影面积为1,,则s1+s2=
知识点6 反比例函数的应用
1. 如图一次函数y1=x-1与反比例函数y2=2/x 的图像交于点A(2,1),B(-1,-2),则使y1 >y2的x的取值范围是( )
A.x>2 B. x>2 或-1<x<0
C. -1<x<2 D. x>2 或x<-1
2. 如图,已知A(-4,2)、B(n,-4)是一次函数的图象与反比例函数的图象的两个交点.
(1)求此反比例函数和一次函数的解析式;
(2) 根据图象写出使一次函数的值小于反比例函数的值的x的取值范围.
变形:如图,已知A(-4,2)、B(n,-4)是一次函数的图象与反比例函数的图象的两个交点.连AO、BO,求S△AOB
3、为了预防“甲流”,某校对教室采用药熏消毒法进行消毒。已知药物燃烧时,室内每立方米空气中的含药量 y(mg)与时间x(min)成正比例,药物燃烧完后,y与x成反比例。现在测得药物8min燃毕,此时室内空气中每立方米含药量6mg,请根据题中所提供信息,解答下列问题:
(1)药物燃烧时,y关于x的函数关系式 ,自变量x的取值范围 ,药物燃烧后y关于x的函数关系式 ;
(2)研究表明,每立方米的含药量低于1.6mg时,学生方可进教室,那么从消毒开始,至少需要经过 分钟后,学生才能回教室;
4、如图所示,点A是反比例函数的图象上一点,AB垂直x轴的正半轴于B点,C是OB的中点;一次函数的图象经过A、C两点,并交y轴于点D(0,-2),若
(1)求反比例函数和一次函数的解析式;
(2)观察图象,请指出在y轴的右侧,当 时,x的取值范围.
课堂小结:
本节有何收获?
1、在一次函数、反比例函数的图象组合图形的面 积计算要注意选择恰当的分解方法.
2、在函数图形中的面积计算中,要充分利用好横、 纵坐标.
3、各种数学思想理解:归类思想、探究思想、转化思想、数形结合思想…….
课后作业:
如图,一次函数y=kx+b的图象与反比例函数y=m/x的图象交于 A(-2,1),B(1,n)两点.
(1)试确定上述反比例函数和一次函数的表达式;
(2)求⊿AOB的面积.