发布网友 发布时间:2022-04-22 18:03
共2个回答
热心网友 时间:2023-09-27 12:58
二次函数在中学数学中起着十分重要的作用,也是初等数学中遇到比较多的函数之一,形如
的函数,它的图象简单,性质易于掌握,又与二次方程、二次不等式有联系,与之相关的理论如判别式,韦达定理,求根公式等又是中学教材的重点内容,因此有必要进一步认识二次函数的性质,研究与二次函数有关的解题规律、方法与技巧.
二次函数
的主要性质:
定义域为
;图象是对称轴平行于
轴(或与
轴重合)的抛物线;当
>0时,抛物线开口向上方,函数的值域是
,当
(-∞,
)时,
是减函数,当
[-
,+∞]时,
是增函数;当
<0时,抛物线开口向下方,函数的值域是
,当
(-∞,
)时,
是增函数,当
[-,+∞)时,
是减函数.当
>0时,函数的图象与
轴有两个不同的交点,它们分别是(
),(
);
=0时,函数的图象与
轴有两个重合的交点(-
,0),这时也称抛物线与
轴相切,
<0时,函数的图象与
轴没有交点.
函数
的图象是连续的.一个有用的结论是,在区间[
]端点处的函数值异号,即
<0时,方程
=0在(
)内恰有一个实根.抛物线的凸性也有一定用途,
>0时,函数的图象是下凸形曲线,即对于任意
,有
≤
;
<0时,
函数的图象是上凸形曲线,即对于任意
,有
≥
利用二次函数图象的凸性和单调性,在某些与二次方程的范围有关的问题中可避免使用判别式和求根公式.
一.
含有参变数的二次函数
对于二次函数
,当
、
、
固定时,此二次函数唯一确定,它的图象是一条抛物线;若
、
固定时,
可以在某个范围内变动,则它的图象可能是“一族”抛物线,对于
、
、
的不同范围和条件,得到的抛物线族具有不同的特征,如何确定这些特征,就因题而异了.
希望以上内容对您有帮助,如果您认可我的回答,请采纳为满意答案,如果有疑问,请补充。
热心网友 时间:2023-09-27 12:58
二次函数都是抛物线函数(它的函数轨迹就像平推出去一个球的运动轨迹,当然这个不重要)
因此
把握它的函数图像就能把握二次函数
在函数图像中
注意几点(标准式y=ax^2+bx+c,且a不等于0):
1、开口方向与二次项系数a有关
正
则开口向上
反之反是。
2、必有一个极值点,也是最值点。如果开口向上,很容易想象这个极值点应该是最小点
反之反是。且极值点的横坐标为-b/2a。极值点很容易出应用题。
3、不一定和x轴有交点。当根的判定式δ=b^2-4ac<0时,没有交点,也就是ax^2+bx+c=0这个方程式“没有实数解”(不能说没有解!具体你上高中就知道了)如果
δ=0
那么正好有一个交点,也就是我们说的x轴与函数图像向切。对应的方程有唯一实数解。δ>0时,有两个交点,对应方程有2个实数解。
4、不等式。如果你把上面3点搞清楚了
参考函数图像
不等式你就一定会解了。