初中函数入门基础知识有哪些?

发布网友 发布时间:2022-04-22 20:47

我来回答

3个回答

热心网友 时间:2023-07-04 08:20

初中函数入门基础知识如下:

一、定义

函数的定义:一般地,在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就说x是自变量,y是x的函数,y的值称为函数值。

二、分类

(1)、常函数:x取定义域内任意数时,都有y=C(C是常数),则函数y=C称为常函数,其图象是平行于x轴的直线或直线的一部分。

(2)、一次函数:一般形如y=kx+b(k,b是常数,k≠0),其中x是自变量,y是因变量。特别地,当b=0时,y=kx+b(k为常数,k≠0),y叫做x的正比例函数。

三、函数的表示方法

(1)、解析法:两个变量之间的关系有时可以用含有这两个变量及数*算符号的等式来表示,这种表示方法叫做解析法。

(2)、列表法:把自变量x的一系列值和函数y的对应值列成一个表格来表示函数关系,这种表示方法叫做列表法。

(3)、图象法:用图象表示函数关系的方法叫做图象法。

四、一次函数的图像及性质

(1)、在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。

(2)、一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)。

(2)、正比例函数的图像总是过原点。

五、二次函数的三种表达式

(1)、一般式:y=ax^2+bx+c(a,b,c为常数,a≠0)。

(2)、顶点式:y=a(x-h)^2+k。

(3)、交点式:y=a(x-x₁)(x-x₂)[仅限于与x轴有交点A(x₁,0)和B(x₂,0)的抛物线]。

六、二次函数图像的对称关系

对于一般式:

①、y=ax2+bx+c与y=ax2-bx+c两图像关于y轴对称。

②、y=ax2+bx+c与y=-ax2-bx-c两图像关于x轴对称。

③、y=ax2+bx+c与y=-ax2-bx+c-b2/2a关于顶点对称。

④、y=ax2+bx+c与y=-ax2+bx-c关于原点中心对称。

热心网友 时间:2023-07-04 08:20

初中函数学习需要把一次函数、正反比例函数等以前学过的相关函数的基础:明确:一次函数y=ax+b,反比例函数它们的图象和各系数(包括a,b,k)之间的关系如何。

在除以学习过坐标轴以后,我们在初二阶段开始学习坐标系,坐标系是所有函数的容器,在所有的函数里面需要坐标系来体现的。

另外需要学会表示点,学会利用横纵坐标来表示点的位置和特点。学会表示点的位置,点的移动和点的特性。

函数的三种表示法

1.解析法:两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做解析法。

2.列表法:用列表的方法来表示两个变量之间函数关系的方法叫做列表法。这种方法的优点是通过表格中已知自变量的值,可以直接读出与之对应的函数值;缺点是只能列出部分对应值,难以反映函数的全貌。

3.图像法:把一个函数的自变量x与对应的因变量y的值分别作为点的横坐标和纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象。

热心网友 时间:2023-07-04 08:21

初中函数入门基础知识有:一元一次函数、函数的定义以及解法等,只有学会了这些,才能学习其他函数。

声明声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:11247931@qq.com