发布网友 发布时间:2022-04-21 06:48
共1个回答
热心网友 时间:2023-11-06 21:44
利用计算机进行遥感信息的自动提取则必须使用数字图像,由于地物在同一波段、同一地物在不同波段都具有不同的波谱特征,通过对某种地物在各波段的波谱曲线进行分析,根据其特点进行相应的增强处理后,可以在遥感影像上识别并提取同类目标物。早期的自动分类和图像分割主要是基于光谱特征,后来发展为结合光谱特征、纹理特征、形状特征、空间关系特征等综合因素的计算机信息提取。
常用的信息提取方法是遥感影像计算机自动分类。首先,对遥感影像室内预判读,然后进行野外调查,旨在建立各种类型的地物与影像特征之间的对应关系并对室内预判结果进行验证。工作转入室内后,选择训练样本并对其进行统计分析,用适当的分类器对遥感数据分类,对分类结果进行后处理,最后进行精度评价。遥感影像的分类一般是基于地物光谱特征、地物形状特征、空间关系特征等方面特征,目前大多数研究还是基于地物光谱特征。
在计算机分类之前,往往要做些预处理,如校正、增强、滤波等,以突出目标物特征或消除同一类型目标的不同部位因照射条件不同、地形变化、扫描观测角的不同而造成的亮度差异等。
利用遥感图像进行分类,就是对单个像元或比较匀质的像元组给出对应其特征的名称,其原理是利用图像识别技术实现对遥感图像的自动分类。计算机用以识别和分类的主要标志是物体的光谱特性,图像上的其它信息如大小、形状、纹理等标志尚未充分利用。
计算机图像分类方法,常见的有两种,即监督分类和非监督分类。监督分类,首先要从欲分类的图像区域中选定一些训练样区,在这样训练区中地物的类别是已知的,用它建立分类标准,然后计算机将按同样的标准对整个图像进行识别和分类。它是一种由已知样本,外推未知区域类别的方法;非监督分类是一种无先验(已知)类别标准的分类方法。对于待研究的对象和区域,没有已知类别或训练样本作标准,而是利用图像数据本身能在特征测量空间中聚集成群的特点,先形成各个数据集,然后再核对这些数据集所代表的物体类别。
与监督分类相比,非监督分类具有下列优点:不需要对被研究的地区有事先的了解,对分类的结果与精度要求相同的条件下,在时间和成本上较为节省,但实际上,非监督分类不如监督分类的精度高,所以监督分类使用的更为广泛。
细小地物在影像上有规律地重复出现,它反映了色调变化的频率,纹理形式很多,包括点、斑、格、垅、栅。在这些形式的基础上根据粗细、疏密、宽窄、长短、直斜和隐显等条件还可再细分为更多的类型。每种类型的地物在影像上都有本身的纹理图案,因此,可以从影像的这一特征识别地物。纹理反映的是亮度(灰度)的空间变化情况,有三个主要标志:某种局部的序列性在比该序列更大的区域内不断重复;序列由基本部分非随机排列组成;各部分大致都是均匀的统一体,在纹理区域内的任何地方都有大致相同的结构尺寸。这个序列的基本部分通常称为纹理基元。因此可以认为纹理是由基元按某种确定性的规律或统计性的规律排列组成的,前者称为确定性纹理(如人工纹理),后者呈随机性纹理(或自然纹理)。对纹理的描述可通过纹理的粗细度、平滑性、颗粒性、随机性、方向性、直线性、周期性、重复性等这些定性或定量的概念特征来表征。
相应的众多纹理特征提取算法也可归纳为两大类,即结构法和统计法。结构法把纹理视为由基本纹理元按特定的排列规则构成的周期性重复模式,因此常采用基于传统的Fourier频谱分析方法以确定纹理元及其排列规律。此外结构元统计法和文法纹理分析也是常用的提取方法。结构法在提取自然景观中不规则纹理时就遇到困难,这些纹理很难通过纹理元的重复出现来表示,而且纹理元的抽取和排列规则的表达本身就是一个极其困难的问题。在遥感影像中纹理绝大部分属随机性,服从统计分布,一般采用统计法纹理分析。目前用得比较多的方法包括:共生矩阵法、分形维方法、马尔可夫随机场方法等。共生矩阵是一比较传统的纹理描述方法,它可从多个侧面描述影像纹理特征。
图像分割就是指把图像分成各具特性的区域并提取出感兴趣目标的技术和过程,此处特性可以是像素的灰度、颜色、纹理等预先定义的目标可以对应单个区域,也可以对应多个区域。
图像分割是由图像处理到图像分析的关键步骤,在图像工程中占据重要的位置。一方面,它是目标表达的基础,对特征测量有重要的影响;另一方面,因为图像分割及其基于分割的目标表达、特征抽取和参数测量的将原始图像转化为更抽象更紧凑的形式,使得更高层的图像分析和理解成为可能。
图像分割是图像理解的基础,而在理论上图像分割又依赖图像理解,彼此是紧密关联的。图像分割在一般意义下是十分困难的问题,目前的图像分割一般作为图像的前期处理阶段,是针对分割对象的技术,是与问题相关的,如最常用到的利用阈值化处理进行的图像分割。
图像分割有三种不同的途径,其一是将各象素划归到相应物体或区域的象素聚类方法即区域法,其二是通过直接确定区域间的边界来实现分割的边界方法,其三是首先检测边缘象素再将边缘象素连接起来构成边界形成分割。
阈值是在分割时作为区分物体与背景象素的门限,大于或等于阈值的象素属于物体,而其它属于背景。这种方法对于在物体与背景之间存在明显差别(对比)的景物分割十分有效。实际上,在任何实际应用的图像处理系统中,都要用到阈值化技术。为了有效地分割物体与背景,人们发展了各种各样的阈值处理技术,包括全局阈值、自适应阈值、最佳阈值等等。
当物体与背景有明显对比度时,物体的边界处于图像梯度最高的点上,通过跟踪图像中具有最高梯度的点的方式获得物体的边界,可以实现图像分割。这种方法容易受到噪声的影响而偏离物体边界,通常需要在跟踪前对梯度图像进行平滑等处理,再采用边界搜索跟踪算法来实现。
为了获得图像的边缘人们提出了多种边缘检测方法,如Sobel, Canny edge, LoG。在边缘图像的基础上,需要通过平滑、形态学等处理去除噪声点、毛刺、空洞等不需要的部分,再通过细化、边缘连接和跟踪等方法获得物体的轮廓边界。
对于图像中某些符合参数模型的主导特征,如直线、圆、椭圆等,可以通过对其参数进行聚类的方法,抽取相应的特征。
区域增长方法是根据同一物体区域内象素的相似性质来聚集象素点的方法,从初始区域(如小邻域或甚至于每个象素)开始,将相邻的具有同样性质的象素或其它区域归并到目前的区域中从而逐步增长区域,直至没有可以归并的点或其它小区域为止。区域内象素的相似性度量可以包括平均灰度值、纹理、颜色等信息。
区域增长方法是一种比较普遍的方法,在没有先验知识可以利用时,可以取得最佳的性能,可以用来分割比较复杂的图像,如自然景物。但是,区域增长方法是一种迭代的方法,空间和时间开销都比较大。
基于像素级别的信息提取以单个像素为单位,过于着眼于局部而忽略了附近整片图斑的几何结构情况,从而严重制约了信息提取的精度,而面向对象的遥感信息提取,综合考虑了光谱统计特征、形状、大小、纹理、相邻关系等一系列因素,因而具有更高精度的分类结果。面向对象的遥感影像分析技术进行影像的分类和信息提取的方法如下:
首先对图像数据进行影像分割,从二维化了的图像信息阵列中恢复出图像所反映的景观场景中的目标地物的空间形状及组合方式。影像的最小单元不再是单个的像素,而是一个个对象,后续的影像分析和处理也都基于对象进行。
然后采用决策支持的模糊分类算法,并不简单地将每个对象简单地分到某一类,而是给出每个对象隶属于某一类的概率,便于用户根据实际情况进行调整,同时,也可以按照最大概率产生确定分类结果。在建立专家决策支持系统时,建立不同尺度的分类层次,在每一层次上分别定义对象的光谱特征、形状特征、纹理特征和相邻关系特征。其中,光谱特征包括均值、方差、灰度比值;形状特征包括面积、长度、宽度、边界长度、长宽比、形状因子、密度、主方向、对称性,位置,对于线状地物包括线长、线宽、线长宽比、曲率、曲率与长度之比等,对于面状地物包括面积、周长、紧凑度、多边形边数、各边长度的方差、各边的平均长度、最长边的长度;纹理特征包括对象方差、面积、密度、对称性、主方向的均值和方差等。通过定义多种特征并指定不同权重,建立分类标准,然后对影像分类。分类时先在大尺度上分出"父类",再根据实际需要对感兴趣的地物在小尺度上定义特征,分出"子类"。