发布网友 发布时间:2022-04-21 06:48
共1个回答
热心网友 时间:2022-03-30 16:08
基本体整体趋包含颜色、纹理、平面空间对应关系、外形,或者其他统计特征。 图像特征的提取与表达是基于内容的图像检索技术的基础。从广义上讲,图像的特征包括基于文本的特征(如关键字、注释等)和视觉特征(如色彩、纹理、形状、对象表面等)两类。视觉特征又可分为通用的视觉特征和领域相关的视觉特征。前者用于描述所有图像共有的特征,与图像的具体类型或内容无关,主要包括色彩、纹理和形状;后者则建立在对所描述图像内容的某些先验知识(或假设)的基础上,与具体的应用紧密有关,例如人的面部特征或指纹特征等。 颜色是彩色图像最底层、最直观的物理特征,通常对噪声,图像质量的退化,尺寸、分辨率和方向等的变化具有很强的鲁棒性,是绝大多数基于内容的图像和视频检索的多媒体数据库中使用的特征之一。颜色特征的描述方法主要有以下四种:
颜色直方图(ColorHistogram)
它是最简单也是最常用的颜色特征,描述了图像颜色的统计分布特性,具有平移、尺度、旋转不变性。其核心思想是在颜色空间中采用一定的量化方法对颜色进行量化,然后统计每一个量化通道在整幅图像中所占的比重。
常用的颜色空间有RGB,CIE,HSI,HSV空间等,主要的量化方法有最重要信息位、颜色空间划分、颜色空间聚类、参考颜色、图像分割等,文献中讨论了对这些方法进行了讨论和总结。 由于颜色直方图缺乏颜色的空间分布信息,改进的方法包括在颜色索引时加入空间位置信息和基于区域的颜色查询。最简单的方法是子窗口直方图法,即将图像分割成子图像,一一建立索引。另一文献中将图像分成了大小相等的九个子图像,然后统计每个子图像中的颜色直方图。
颜色相关图(ColorCorrelogram)
其主要思想是用颜色对相对于距离的分布来描述信息,它反映了像素对的空间相关性,以及局部像素分布和总体像素分布的相关性,并且容易计算,特征范围小,效果好。
颜色矩(ColorMoment)
其基本思想是在颜色直方图的基础上计算出每个颜色通的均值、方差、偏差,用这些统计量替代颜色的分布来表示颜色特征。它具有特征量少,处理简单的特点。
颜色一致性矢量(Color Coherence Vectors, CCV)
本质上是一种引入空间信息改进的直方图算法,统计了图像中各颜色最大区域的像素数量。通过分离开一致性像素和非一致性像素,比直方图算法具有更好的区别效果。 纹理是图像的重要特征之一,通常定义为图像的某种局部性质,或是对局部区域中像素之间关系的一种度量,其本质是刻画像素的邻域灰度空间分布规律。纹理特征描述方法大致可以分为四类:统计法、结构法、模型法、频谱法。
统计法
统计法分析纹理的主要思想是通过图像中灰度级分布的随机属性来描述纹理特征。最简单的统计法是借助于灰度直方图的矩来描述纹理,但这种方法没有利用像素相对位置的空间信息。
为了利用这些信息,Haralick 等人提出了用共生矩阵来表示纹理特征。 该方法研究了纹理的空间灰度级相关性,构造出一个基于图像像素间方向和距离的共生矩阵,并且从矩阵中提取出反差、能量、熵、相关等统计量作为特征量表示纹理特征。
Tamura 等人基于人类视觉的心理学研究后提出了一些不同的方法来描述纹理特征,给出了几个不同的描述纹理特征的术语:粗糙度(Coarseness) 、对比度(Contrast) 、方向(Directionality) 、线性度(Linelikeness) 、规则度(Regularity) 、粗略度(Roughness) 等。Tamura 纹理和共生矩阵表示的主要区别在于:前者的所有纹理属性都是视觉意义上的,而后者的某些纹理属性不具有视觉意义(如信息熵) 。这一特点使得Tamura 的纹理表示在图像检索中使用得较多。QBIC 和MARS都进一步证明了这种表示方法。
结构法
结构法分析纹理的基本思想是假定纹理模式由纹理基元以一定的、有规律的形式重复排列组合而成,特征提取就变为确定这些基元并定量分析它们的排列规则。Carlucci曾提出一个使用直线段、开放多边形和封闭多边形作为纹理基元的纹理模型,其排列规则由一种图状语法结构定义。 Lu and Fu给过一种树型语法结构表示纹理,他们将纹理按照9 ×9 的窗口进行分割,每个分解单元的空间结构表示为一棵树。 因为实际的纹理大都是无规则的,因此结构法受到很大*。
模型法
模型法利用一些成熟的图像模型来描述纹理,如基于随机场统计学的马尔可夫随机场、子回归模型,以及在此基础上产生的多尺度子回归模型 (MultiResolution Simultaneous Autoregressive, MRSA) 等。这些模型的共同特点是通过少量的参数表征纹理。MRSA 区分不同纹理模式的能力较强,但同时计算开销也较大。
频谱法
频谱法借助于频率特性来描述纹理特征,包括傅里叶功率谱法 、Gabor 变换 、塔式小波变换( Pyramid Wavelet Transform ,PWT) 、树式小波变换( Tree Wavelet Transform,TWT) 等方法。Manjunath and Ma 实验指出, Gabor 特征提供了最佳的模式检索精度,检索性能优于TWT 和PWT,略微优于MRSA ,缺点是计算速度慢,其旋转不变性和尺度不变性仍有待讨论。 形状是刻画物体最本质的特征,也是最难描述的图像特征之一,主要难在对图像中感兴趣目标的分割。对形状特征的提取主要是寻找一些几何不变量。目前用于图像检索的形状描述方法主要有两类:基于边缘和基于区域的形状方法。前者利用图像的边缘信息,而后者则利用区域内的灰度分布信息。
基于边缘
基于边缘的形状特征提取是在边缘检测的基础上,用面积、周长、偏心率、角点、链码、兴趣点、傅里叶描述子、矩描述子等特征来描述物体的形状,适用于图像边缘较为清晰、容易获取的图像。文献[16]首先对图像进行了高斯平滑,接着使用经典的兴趣点检测算法发现兴趣点,然后用兴趣点的测度值作为图像特征进行匹配。文献 提出将图像边缘上的角点作为特征点,然后使用Delaunay三角形进行划分,记录三角形的形状特征来描述图像的形状特征。这种方法由于是基于边缘上的一些特殊点,因此对噪声和点位置的变化较为敏感。文献采用边缘方向直方图来刻画形状特征,具有简单、平移不变性等优点,但也存在不具备尺度、旋转不变性等缺点。
基于区域
基于区域的形状特征提取的主要思路是通过图像分割技术提取出图像中感兴趣的物体,依靠区域内像素的颜色分布信息提取图像特征,适合于区域能够较为准确地分割出来、区域内颜色分布较为均匀的图像。文献应用变形模板技术,把用户提供的形状看作模板,与图像库中的形状进行匹配。由于是直接比较两个形状,因此具有较高的精度,但同时计算量也较大。 文献提出了一种形状弹性匹配算法,首先确定感兴趣区域,在这些区域中采用爬山优化算法获取图像边缘,并用这些边缘代表物体形状。 这种方法的优点是对图像边缘进行了筛选,缺点是需要人工干预。近年来,基于区域的图像检索方法已经成为基于内容的图像检索的一大研究热点。